
Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture - 05
Size of vector clock, Matrix clocks, Virtual time and Physical clock

 Synchronization

Lecture 5: Size of vector clock, Matrix clock, Virtual time and Physical clock

Synchronization. These are the topics of lecture 5. Preface: recap of previous lecture.

(Refer Slide Time: 00:28)

In previous lecture we have discussed the models of distributed computation and

presented the idea of causality and logical time that was proposed by Lamport in 1978, in

an attempt to order the events in a distributed system. We have discussed two systems of

logical clock namely, scalar and vector clocks to capture causality between events in a

distributed system.

(Refer Slide Time: 00:57)

Content of this lecture, in this lecture we will discuss about the size of vector clocks,

matrix clock, virtual time and physical clock synchronization.

So, in the last class we have seen the concept of causality which is the fundamental in the

design of distributed systems. Usually, causality is tracked using physical time. Now

physical time in day to day life we also use it in the form of the loosely synchronized

clocks, which we have in the form of wristwatch wall clocks and so on. Our activities are

timed using access to these clocks in computer that is in a centralized system there is a

single clock and the processes using the issue of the system calls. They can access the

computer clock and the events or the processes can get the time out of it, the next process

when demands the time it will get the next time and so on.

So, in a centralized system there is no need of clock synchronization, in a distributed

system processors have their clocks loosely synchronized all the clocks and as far as

synchronization of a clock is concerned becomes a big problems and we are going to see

in this particular topic, today all these aspects of causality. How we are going to obtain

the causality in a distributed system and physical clocks or a logical clock whichever of

them is going to be useful for a design of distributed system.

So, in the last class we have seen the logical clocks in two forms, the first is called scalar

clock, the other was the vector clock. Scalar clock provided the clock consistency

property and the vector clock provided the strong consistency property. So, the

applications which it needs them will be basically going to use them, today we are going

to see that the size of the vector clocks; why it is required to be the size of the number of

process that is called n. So, that is called size of vector clock, is it required to have an

always or we can basically work with less than n still we can have the strong consistency

property let us go ahead.

(Refer Slide Time: 03:40)

So, size of vector clocks an important question to ask is whether the vector clocks of size

n are necessary, in the computation consisting of n processes to answer this question, we

have to examine the usage of vector clocks. So, usage of vector clock means the

applications where we are going to use them will answer this kind of question. So, the

vector clock provides the latest known local time at each other process. So, if this

information in the clock is to be used to explicitly track the progress at every other

process, then vector clock of size n is necessary.

Now a popular use of vector clock is to determine the causality between the pair of

events, given any events e and f the test that e has happened before f if and only if, the

timestamp of e is smaller than timestamp of f which requires a comparison of vector

clocks of e and f. Although it appears that the size of n is necessary that is not quite

accurate, that we are going to see here. It can be shown that the size equal to the

dimension of a partial order that is e and that happened before relation is necessary,

where the upper bound on this dimension is n not the size of n.

(Refer Slide Time: 05:04)

So, the definitions in this regard we are going to see to understand this result, on the size

of clocks during determining the causality between the pair of events, we firstly to do

some definitions linear extension of the partial order, is the linear ordering of e that is

consistent with the partial order that, is if two events are ordered in a partial order they

are also ordered in the linear order. So, linear extension can be viewed as projecting all

the events from different processes on a single time axis, the dimension of a partial order

is the minimum number of linear extensions whose intersection gives exactly the partial

order.

So, having given this particular definition of a linear order so now we are going to see

that linear order, will necessarily introduce the ordering between the pair of events and

some of these orderings are not in a partial order, also observe that differently resistances

are possible in general and let P denote the set of tuples in a partial order defined by

causality relation.

So, there is a tuples e f in P for each pair of events e f. So, that e has happened before f,

let linear extensions L 1 L2 and so on; denote the set of tuples in different linear

extensions of this partial order. The set capital P is contained in the set obtained by taking

the intersections of such collections of linear extensions L1 L 2 and so on. This is

because Li contain all the peoples that is the causality dependencies that are in P.

(Refer Slide Time: 06:40)

Now, let us take one example when there is a client server interaction application, now

here the client server interaction happens between a pair of processes the queries to the

server and the responses to the client occur in a strict alternating sequences, although n is

equal to 2 that is client and server; all the events are is strictly ordered and there is only

one linear extension of all events that is consistent with the partial order, hence the

dimension of this partial order is 1.

So, the scalar clock such as one implemented by the Lamports scalar, clock rules is id

equal to t to determined e has happened before f for any 2 events. So, here only although

n is equal 2, but the vector, but only the size of the clock is 1 required to solve this

application.

(Refer Slide Time: 07:30)

Similarly, another application it is called concurrent send and read, send and receive. So,

now, consider an execution on processes P 1 and P 2, such that each send a message to

the other before receiving the others message. So, the 2 send events are concurrent, as

are the 2 receive events. To determine the causality between the send events are between

the receive events it is not sufficient to use a single integer a vector clock of size 2 is

necessary, this execution exhibits a graphical property called crown. So, a crown of n

messages has n dimension.

(Refer Slide Time: 08:15)

So, we are going to see another example of a complex execution. So, in a complex

execution to determine the dimension of a partial order is not going to be straight

forward. Next figure 5.1 shows an execution of 4 processes; however, the dimension of

this partial order is going to be 2. So, that is a vector clock of size 2 is good enough to

provide the strong consistency property, among the four process interaction in this

particular example.

To see this informally let us consider the longest chain a b d g h i j, there are events

outside this chain that can yield multiple linear exchanges and the dimension is more

than one, the right side of figure 5.1 we are going to show. Now, that earliest possible

and the latest possible occurrences of the events are not in this chain, with respect to the

events in this particular chain see this particular example here.

(Refer Slide Time: 09:13)

So, in this example we have seen so the longest linear extension chain that is a b d then g

h i and j. So, that is mentioned over here the longest, now out of this particular longest

chain. What we can see here these are basically the events which are outside this

particular chain that is c e and f. So, c e and f basically outside the chain so, now we are

going to form the linear extension. So, 2 linear extensions are possible here in this case

so; obviously, the dimension of the partial order is not going to be 1, but more than one.

So, 2 linear extensions if you see is possible with the earliest time and the latest time of c

e and f.

(Refer Slide Time: 10:34)

So, there are 2 different linear extensions are possible who are here in this case and these

2 linear extensions if we take intersection, it will give the partial order set that is what is

going to be shown here in this particular complete illustrative example.

So, L1 is a linear extension L2 is another linear extension and when L 1 minus partial

ordered set P intersection L 2 it becomes empty or a phi, similarly L 2 is a linear

extension minus P intersection L 1 is also given giving the empty one. So, hence the

intersection of L 1 and L 2 these are the 2 linear extension this will basically generate the

complete partial order.

Hence the dimension of this particular execution is 2. So that means, 2 linear extensions

are good enough to generate this partial order, hence the vector clock of size 2 is good

enough to ensure by strong consistency property and hence basically to solve this

application. So, all for the total number of processes is equal to four. So, only the vector

clock of size 2 is required here in this particular case.

So, finding out the dimension of the partial order is not going to be easy, computationally

is going to be difficult. So, basically posterior legal analysis is required here in this case

to identify the size of the vector clock and it can be optimized and different algorithms

are going to use this kind of concept in reducing the size of the vector clock.

(Refer Slide Time: 12:15)

Now, the next clock we are going to see is called the matrix time or a matrix clock. So, in

a system of matrix clocks, the time is represented by a set of n by n matrix of non

negative integers.

So, let us go and see the details of the matrix time, a process pi maintains a matrix mt i n

by n where mt i i comma i denotes the local logical clock of pi and tracks the progress of

computation. So, it is going to be working like a scalar time, like we have seen in the

scalar clock. The other component that is called mt i i comma j denotes the latest

knowledge of process pi, has about local logical clock of process p j. That means, this

particular aspect will give you something called vector time, the notion of a vector time

is given here in this case.

Now, the third aspect of a matrix time that is mt i j comma k, represents the knowledge

that pi has about the latest knowledge that p j process, has about the local logical clock of

pk. This global information is stored in the local view of process pi. So, the entire matrix

pi denotes the pi local view of the global logical time here in this matrix clock.

(Refer Slide Time: 14:09)

Now, the 2 rules which matrix clock used to follow to update this clock is R 1 and R 2

we are going to explain it. So, the rule R 1 before executing an event process p i updates

its local logical time as follows. So, it will be done according to by scalar clock that we

have already seen the rule R 2, each message m is piggybacked with the matrix time mt;

when pi receives such a message containing that particular matrix timestamp message

from pj, then p i execute the following sequence of actions. So, it will update its global

logical time as follows.

So; that means, mt i that is pi process for its i-th, row that is a i-th vector it will update as

per the information as per the time, which is as for the matrix which is received by that

particular process pj. So, it will be like updating the vector clock, now the remaining

portion of the matrix of i will be updated like this.

So, basically for k which is greater than 1; that means, for all other rows and also the

complete vector of the basically the rows of other processes are going to be updated as

per the information, which is being obtained from the message which has basically sent

its the matrix timestamp. After doing this updation according to rule R 2 it will execute R

1 and it will tell you or the message m.

(Refer Slide Time: 16:25)

So, example one you can clearly see that event e 1 is represented here in the matrix and

this particular element is representing the local clock or the scalar time of process 1.

Now this particular matrix when it sends a message according to the event 1 which is

message sent event, similarly event 3 also will basically how this kind of matrix because

the third row and the third column will basically indicate the scalar time of process P 3,

similarly when they will be received at e 2 of a process P 2. So, now, let us see the details

how it will be basically updating the clock.

So, process P 2 first it will basically modify it is a scalar clock. So, that is in the second

row and the second column. So, it will be the event number 1, now as far as the time

which it has received that will be updated based on the information, based on the local

view of the other process for example, process 1 has its clock 1. So, it will be updated

over here, similarly process 3 has a clock value 1 so, it will be updated. So, this will be

the vector clock kind of updation which we have seen. The remaining part this portion

will be copied here and the last portion also will be copied here. So, the P 2 will have the

view of the P 3 time, similarly the P 2 will have the view of P 1 time and this particular

updation is done according to the matrix clock rule which we have seen.

(Refer Slide Time: 18:44)

In another example you can see when this particular message is received to P 2. So, P 2

means its vector at the second row, its particular event that is the scalar event is first

updated and then it will update the vector time. So, vector time means the time of one

will be updated over here and 0 means it has not seen about any event from P 3 and this

will be copied over here as far as the third updation, that is the matrix clock which is the

copied the vector of other processes; which P 2 will have the knowledge. Similarly about

the other interactions you can see finally, you can see that the event e 3 which has

complete view of all the events which has happened. So, let us see its vector.

Now, so e 3 means it is about the process P 3, now its event that is at the second event

because e 3 2 if you see it is second event so; that means, it is a scalar time is 2 and its

vector will be 2 comma 3, that means it has seen. So, far the message which is coming

from 2, so 2 mean it is having 3. So, it will be updated over here similarly it is having the

vector 2 so it will be updated. So, the vector clock and scalar clock both are updated,

now as far as the vectors of other processes are concerned. So, it will be copied similarly

this also will be copied over here. So, this is the matrix time and we have seen the

working of a matrix clock, what are the basic properties of a matrix clock that we are

going to see now.

(Refer Slide Time: 20:54)

So, the vector mt i that is the i-th row that is nothing but the complete vector, it will have

the all the properties of a vector clock, in addition the matrix clock have the following

properties; that means, all the processes with which is having the minimum value of k,

which has seen which is basically having the information at the p i-th

So, minimum value is basically t so that means, process PI knows that every other

process that is process pk knows about P is local time has progressed until t, have having

this information there are many applications which will require this information. Which

says that the other processes will no longer require the information from P i, which is

basically before the time t. Hence, they can discard this absolute information in this

particular manner.

(Refer Slide Time: 22:07)

Now, the next time system we are going to consider is called virtual time, now virtual

time system is a paradigm for organizing and synchronizing distributed system. So, this

particular section we are describing the virtual time and its implementation using time

wrap mechanism. The implementation of a virtual time using time wrap mechanism

works on the basis of optimistic assumption, what is that optimistic assumption time

wrap relies on a general look ahead rollback mechanism, where each process executes

without regard to the other processes having synchronization conflict.

(Refer Slide Time: 22:47)

If a conflict is discovered in the opportunistic in the optimistic assumption, the offending

process are rolled back to the time just before the conflict and executed forward along

the revised path. Detection of conflicts and roll back are transparent to the user, the

implementation of virtual time using time wrap mechanism makes the following

optimistic assumption that, synchronization conflict and roll backs generally are occurred

really. So, it is not a frequent operation for the rollback or a conflict.

(Refer Slide Time: 23:28)

So, virtual time is a global one dimensional temporal coordinates on a distributed

computation to measure the computational progress and to define the synchronization. A

virtual time system is a distributed system executing the coordination with imaginary

virtual clock that uses virtual time. So, virtual times are real values that are totally

ordered by the operation by the relation called less than relation.

So, virtual time is implemented a collection of several loosely synchronized local virtual

clocks, these local virtual clocks move forward to a higher virtual times. However,

occasionally they may move backwards whenever there are conflicts.

(Refer Slide Time: 24:11)

So, virtual time processes can concurrently communicate with each other by exchanging

message. So, every message is characterized by 4 values in virtual time, name the sender

is there virtual send time is there, name of receiver and virtual receive time is there. Now

virtual send time is the virtual time of the sender when the message is sent, whereas

virtual receive time specifies the virtual time when the message must be received by the

receiver.

(Refer Slide Time: 24:41)

So, the problem arises when the message arrives at a process late, that is the virtual

receive time of the message is less than the local virtual time at the receiver process

when the message arrives. So, this is going to be handled here in virtual time. So, what

your time systems are subject to 2 semantic rules, similar to the Lamports clock

conditions rule 1 says that virtual send time each message has will be should be less than

the virtual receive time of that particular message, otherwise there will be a problem and

problem will be resolved using the rule (Refer Time: 25:19).

Rule 2 says that: virtual time of each event in the in the process, is less than the virtual

time of the next event in that particular process. This is going to be solved using the

global clock system. So, the above 2 rules imply that the process sends all the message in

the increasing order of what virtual send time and the process receives all the message in

increasing order of the virtual receive time.

(Refer Slide Time: 25:45)

Now, it is important and event that causes another should be completely executed before

the cost event can be processed, this is already indicated include 1 and rule 2.

(Refer Slide Time: 25:59)

So, we are now going to see the characteristics of a virtual time, virtual time systems are

not all isomorphic; it may be either discrete or continuous virtual time may be only

partially ordered. Virtual time may be related to the real time or may be independent of

it, virtual time system may be visible to the programmers and manipulated explicitly as

the values of hidden and manipulated explicitly according to some system defined

discipline, virtual times associated with the events may be explicitly calculated by the

user program or may be assigned by fixed rules.

(Refer Slide Time: 26:35)

So, now we are going to see the comparison with Lamports logical clock, how it is how

the virtual time is basically the different. So, in the Lamports logical clock and artificial

clock is created one for each process with the unique levels; from totally ordered set in a

manner consistent with a partial order that we have seen. In virtual time the reverse of

the above is done by assuming that, every event is labeled with a clock value from a

totally ordered virtual time scale satisfying the Lamports condition.

Thus, the time warp mechanism is an inverse of Lamports scheme; in Lamports scheme

all the clocks are conservatively maintained. So, that they never violate causality the

process advances its clock as soon as it learns a new causal dependency in the virtual

time, clocks are optimistically advanced and corrective actions are taken whenever

violations are detected.

(Refer Slide Time: 27:29)

So time warp mechanism, so in the implementation of virtual time using time warp

mechanism, virtual receive time of a message is considered as a timestamp the necessary

and sufficient condition for collect implementation of virtual time are that each process

must handle incoming message in the time stamp order.

(Refer Slide Time: 27:53)

Now, that time warp mechanism consists of 2 major parts, the first is called local control

mechanism, the second part is called global control mechanism. Local control

mechanism ensures that the events are executed and the messages are processed in the

correct order, the global control mechanism takes care of global issues such as global

progress, termination, detection I O handling flow control etc; that we have seen in rule 1

and rule 2 and they are implemented in a time warp mechanism.

(Refer Slide Time: 28:27)

Now, the next part of discussion we are going to see that, if different processors are

having their physical clocks are going to be used in the distributed system then how are

we going to synchronize them and for that we are going to see a protocol which is called

a network time protocol, which does the physical clock synchronization. So, let us begin

this kind of discussion, in centralized system there is only one single clock the process

gets the time by simply using the system call to the kernel.

So, the next process if it gets the time it will get always the higher time because it is

getting from the same clock. So, there is no problem of clock synchronization in

centralized system, how are you in a distributed system there is no global clock or a

common memory, each processor has its own internal clock and its own notion of a time

these clocks, can easily drift seconds per day accumulating a significant error over time

also because different clocks tick at different rates; they may not remain always

synchronize although they may might be synchronized, when they start this clearly poses

serious problem to the application that depends upon the synchronized notion of time.

(Refer Slide Time: 29:55)

So, the most practical application algorithm that runs in a distributed system, we need to

know the time in one or more of the following context. Now unless the clocks in each

machine have a common notion of time based queries cannot be answered. So, clock

synchronization is has a significant effect on many problems like secure system fault,

diagnosis recovery and so on.

(Refer Slide Time: 30:19)

So, clock synchronization is the process of ensuring that physically distributed

processors, how common notion of time due to different clock rates. The clocks at

various sites may diverge with time and periodically clock synchronization must be

performed to correct this clock skew in distributed system, in our day to day life our

wrist watch or our wall clock also loses the synchronization and we do the

synchronization with a universal coordinated time that is UTC.

So, clocks are synchronized to an accurate real time standard, like universal coordinated

time we are not only going to be synchronized, but they have to be synchronized with the

with a global clock or a physical time and that is done through UTC universal

coordinated time. So, clocks that must not be synchronized with each other, but also have

to adhere to the physical time or termed as physical clock. So, physical clock means not

only the synchronized set of clocks, but also they have to be coordinated or synchronized

with the physical time. So, they should be giving the same set of physical time.

(Refer Slide Time: 31:35)

Now, we are going to see into more detail of the clock synchronization and finally, we

are going to basically see how these concepts are going to be used in network time

protocol. So, clock inaccuracies physical clocks are synchronized to an accurate real time

standard like universal coordinated time it is also called UTC.

However, due to the clock in accuracy is discussed above a timer clock is said to be

working within a specification, where constant rho is maximum is skew rate specified by

the manufacturer; so that means, the clock rate must be bounded by 1 plus rho and lower

bounded by 1 minus rho. So, if it is working in this particular equation that is equation

number 1, then we have to see that clock is working with the within the specifications.

(Refer Slide Time: 32:34)

Otherwise, we can see in these situations, if that particular clock rate that is dC by dt is

equal to 1 then it is perfect clock, if it is slower than dC by dt is less than 1 and a fast

clock dC by dt is greater than 1. So, the behaviors of fast slow and perfect clock are

shown here in this particular diagram of a clock inconsistency.

(Refer Slide Time: 32:55)

Offset delay estimation methods are used in a network time protocol we are going to see

what these methods are. So, the network time protocol which is widely used for clock

synchronization on the internet, uses offset delay estimation method the design of

network time protocol involves, hierarchy that is hierarchical tree of times servers. That

means, universal coordinated time will be synchronized in the form of a hierarchical tree.

That is the primary server the root synchronizes with UTC the next level contains the

secondary servers, which acts as a backup to the primary at the lowest level is the

synchronization subset which has the clients.

(Refer Slide Time: 33:43)

Clock offset and delay estimation, in practice source node cannot accurately estimate the

local time on the target node due to the varying messages or the network delays between

the nodes. So, that this protocol implies a common practice of performing several trials

and choose the trial with a minimum delay. Figure 5.4 we are going to show you the

network time protocol timestamps, which are numbered and exchanged between the

peers A and B. Let T 1 T 2 and up to T 4 be the values of four most recent timestamps as

shown in the next figure. Assume clock A and B are stable and running at the same

speed.

(Refer Slide Time: 34:29)

So, these are the four times we have now shown and we are going to use it for offset and

delay estimation.

Now, a is equal to T 1 minus T 3 so this particular portion will become a, that is T 1

minus T 3 and here this portion will become b that is T 2 minus T 4 and this is going to

calculate the offset and delay.

(Refer Slide Time: 35:12)

So, the clock offset which is shown as a theta is nothing but a plus b by 2 and the round

trip delay that is little delta is nothing but a minus v. So, each network time protocol

message includes the latest 3 timestamp that is T 1 T 2 and T 3, while T 4 is determined

upon arrival, does both peers a and b can independently calculate delay and offset using a

single bidirectional message stream shown here in this figure 5.5.

(Refer Slide Time: 35:41)

(Refer Slide Time: 35:49)

Now, with this particular figure 5.5 network time protocol, that is called time

synchronization protocol we are going to see. So, a pair of servers in a symmetric mode

exchange the pair of the timing messages, store of data is then built up about the

relationship between the 2 servers. Specifically assume that the each pair maintains

appear that is O i and D I offset and the delay. So, O i is a measure of theta that is the

offset and Di is the transmission delay of the 2 messages that is little delta, the offset

corresponding to the minimum delay is chosen and that will be basically the O i

minimum delay is basically the Di.

So, specifically the delay and offset are calculated as follows, assume that the message m

takes time t and message m prime takes t prime to transfer the message.

(Refer Slide Time: 36:49)

So, the now the offset between A and B, A’s clock and B’s clock is let us see O. So, A’s

local clock time is A t and B’s local clock time is B t we have at is equal to Bt plus o,

then another equation question number 4 says that T i minus 2 is equal to T i minus 3

plus T plus O, with reference to this particular figure we are going to estimate.

So, same thing that we have seen in the in the previous slides that is being calculated,

now assuming T is equal to T prime and offset O i can be estimated as O i is equal to T i

minus 2 minus T i minus 3 plus T i minus 1 minus T i divided by 2, similarly round trip

D I is estimated as T i minus T i minus 3 minus T i minus 1 and T i minus 2 now having

calculated the equation number 6 and 7. So, the 8 most recent these pairs are retained,

means they are calculate they are basically estimated calculated. So, the values of the

value of O i that corresponds to the minimum Di is chosen estimate of O. So, that we

have already seen.

(Refer Slide Time: 38:31)

Now the question arises we have seen the physical clock synchronization, we have seen

several logical clocks now the question is whether the physical clock or a logical clock is

used to capture the causality in distributed system, which of these methods is good in a

distributed system? Now in a day to day life the global time that a physical time to

reduce the causality relation is obtained from a loosely synchronized clocks, like

wristwatch and wall clocks. However, in distributed computing system the rate of

occurrence of the events is several magnitude higher and the events execution is several

magnitude smaller.

So, consequently if the physical clocks are not precisely synchronized, the causality

relation between the events may not be accurately captured. So, this is the most

important notion, therefore it turns out that in distributed configuration causality relation

between the events produced by the by the program execution and its fundamental

monotonicity property can be accurately captured by the logical clocks.

So, if the clocks physical clocks are used and physical clocks using network time

protocol, basically they can synchronize up to 10 of milliseconds, but if the number of

events which are several magnitude higher and the event execution time is several

magnitude is smaller, basically it is not basically fit in to that accuracies than physical

clocks even the network time protocol will not be useful for the distributed system

applications. So, we have to see what kind of application we are going to run, whether

the physical clock can be used with the network time protocol whether can it solve the

problem or not. But definitely in all cases the logical clocks which basically capture the

fundamental monotonicity property can be captured and can be useful in a distributed

system.

Obviously, the logical clock in all situations it will work perfectly fine for distributed

application and that is why we have seen so much of different kind of the logical clocks,

in this particular part of the discussion.

(Refer Slide Time: 40:41)

So, conclusions in this lecture we have discussed about the size of vector clock, the

matrix clock and the virtual time to capture the causality between the events in a

distributed system. Then we have seen how the physical clock synchronization can be

used as a paradigm for organizing and synchronizing the distributed system.

In upcoming lecture we will discuss about global state and snapshot recording

algorithms.

Thank you.

