
Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture - 03
Leadre Election in Rings

Lecture 3: leader election in the rings preface recap of previous lecture.

(Refer Slide Time: 00:24)

In previous lecture we have discussed the formal model of distributed message passing

system that is synchronous and asynchronous timing models with no failures. We have

seen in the previous lecture, a few simple algorithms for message passing systems and

these algorithms were to understand the concepts and the complexity measures in the

distributed algorithm design the algorithms which we have seen in the previous lecture

used to solve the problem of broadcast, converge cast, DFS and is being used as the basic

building block for the distributed algorithms.

(Refer Slide Time: 01:06)

Content of this lecture, in this lecture we will discuss the leader election problem in a

message passing system for a ring topology in which the group of processors must

choose one among them to be a leader.

(Refer Slide Time: 01:37)

We will present the different algorithms for leader election problems by taking cases like

anonymous or a non anonymous rings uniform or non uniform rings and synchronous

and asynchronous rings.

So, let us begin this particular introduction of leader election problems. So, in this

particular lecture we are considering the topology of a message passing system as a ring.

So, ring is a convenient topology and is basically resembles to the physical token ring

and corresponds to the ring structure of a physical ring and is easy to understand or

design the algorithms in this particular setting that is basically the ring structure.

So, the leader election problem has several variants leader election problem is for each

processor to decide that either it is a leader or a non leader subject to the constraint that

exactly one processor decides to be a leader. So, leader election problem represents a

general class of symmetry breaking problems; so, for example, when a deadlock is

created because of the processors waiting in a cycle for each other.

This particular deadlock can be broken by electing one of the waiting processors as the

leader and removing it from the cycle and thus breaking the deadlock. So, this is called

this particular example is a example where the symmetry breaking is applied in the form

of a leader election algorithm.

(Refer Slide Time: 03:05)

So, leader election definition the processor each processor has a set of elected that is one

and non-elected states. So, once a elected state is entered the processor is always in an

elected state and basically similarly for the non elected states. So, in every admissible

execution every processor eventually enters an elected or a non elected state and exactly

one processor that is the leader enters an elected state; so, again the use of leader election

algorithm.

(Refer Slide Time: 03:47)

We are going to a stress upon this use to motivate the basically construction of the leader

election algorithm.

So, leader election can be used to coordinate activities in a distributed system; so, for

example, finding a spanning tree using the leader as the route. So, we have seen that it

becomes easy to basically construct a spanning tree that is DFS, if the route is given and

to identify the route in a network leader election algorithm can be used.

Similarly, if in a token ring network if a token is lost, then to reconstruct the lost token a

leader election algorithm can be of great help. So, leader election algorithm will identify

one of the node and that particular node will recreate the token and will be start resume

the token ring a structure. So, in this lecture, we will study the leader election in the

message passing system that is called the ring structure.

(Refer Slide Time: 04:50)

So, we are going to now describe about the ring topology. So, in an oriented ring

processor have a consistent notion of left and right. So, for example, this particular

diagram which is illustrated over here you can see the processors p 0, p 1, p 2, p 3 and p

4; they have p 0 and p 1; they have the channel. So, p 0 is connected to p 1 on the left

side, it is numbered as 1 and p 1 is connected to p 0 with a number that is 2 that is called

the right side. So, if you see all the numbers as 1, then the orientation of the ring is

basically nothing, but the orientation of a ring is a clockwise. So, if we basically keep on

navigating over the number 1.

Similarly, if we are navigating over number 2 that is p 0 is basically communicating with

p 4 and p 4 is p 3 that is through the number 2, then basically it is a counter clockwise.

So, this is called oriented ring. So, orientation of a ring can be basically formed using

these a numbering of a channel and that is that to be done by the processors at its own

level there is a local level with a local knowledge.

(Refer Slide Time: 06:31)

So, for example, if the messages are always forwarded on a channel one there will be

cycle clockwise around the ring. So, why we study the ring because in a message passing

system which is basically used as a ring structure or a ring topology gives a starting point

and also easy to analyze the algorithm and design the algorithm in this particular setting

that we are going to see that is the leader election algorithm.

This abstraction of this particular ring is a token ring also. So, and the lower bounds and

impossibility results for the ring topology also applies to an arbitrary topologies. So,

whatever algorithms we are a design in this particular setting can also be applied as well

in arbitrary topologies.

(Refer Slide Time: 07:13)

So, the different kinds of rings we are now going to start and discuss the first type is

called anonymous rings in anonymous rings the processors do not have the unique

identifiers; that means, all the processors are anonymous and thus the ring form out of

these processors without having any ids unique ids they are called anonymous rings.

So, in this particular setting, each processor will have the same state machine and also

the algorithm relies on knowing the ring size that is if that is how many number of

processors are there then.

(Refer Slide Time: 08:03)

There is another kind of ring structure and that is called basically a uniform ring.

So, uniform ring will have n nodes, but these particular numbers of nodes are not known

then it is called uniform because all the processors are not uniform the algorithm which

uses this information that is without knowing the ring size called uniform algorithm. So,

uniform algorithm does not use the ring size formally every processor in every size ring

is modelled with the same state machine here and that is why it is called uniform

algorithm or uniform ring structure a non uniform algorithm uses the size of ring in the

algorithm design. So, formally each value of n every processor in the ring of size n is

modelled with the same state machine that is of an so; that means, for a different ring

size of value n different algorithms or different state machine will represent by A n.

(Refer Slide Time: 09:17)

Now, we are going to see if the ring is anonymous that is the unique ids are not given to

the processors. So, about in this particular setting about the structure that is a ring leader

election algorithm, how it will work in this particular setting. So, there is a theorem

which says that there is no leader election algorithm for anonymous rings even if the

algorithm knows the ring size that is if it is non uniform and also, it is basically

following a synchronous model.

So, this result is called impossibility result; that means, no leader election is possible if

the ring is anonymous that is if the IDs are not given we are going to see the proof and

then this impossibility results will be used in as basically a information to develop the

leader election algorithm.

So, the proof is sketch goes like this every processor now begins in the same state with

the same outgoing message since they are anonymous. So, every processor receives the

same message does the same state transition and sends the same message in the round

one. Now you may ask if a processor is sending the message to whom it is sending how

it will you know to whom, it is going to send or that who is the destination.

Then we have seen that the channel numbers that is if it is oriented ring; that means, if it

is a clockwise then it will always basically send to the channel 1 and so on. So, basically

the channel numbers will be used instead of if the IDs are not known and this particular

structure will represent the same state machines. So, same message will be transmitted in

same state transition will happen after the receipt of a message.

So, eventually some processor is supposed to enter in a elected state bun then, but then

all would enter into a elected state.

(Refer Slide Time: 11:24)

So, in this particular setting if we analyze using the safety property that never elects

more than one leader here every node is elected as a leader or liveness eventually elect at

least one leader is also violated. So, in this particular proof we have seen that there is no

leader election algorithm for anonymous rings.

(Refer Slide Time: 11:41)

Now, since we have proved this theorem for since the theorem was proof for non

uniform and synchronous rings.

(Refer Slide Time: 11:44)

And the same result will hold for weaker models weaker models in the sense; if it is

uniform means the value of n is not known and also a weaker one that is called

asynchronous timing model then also this particular theorem holds and leader election is

not possible for anonymous rings.

(Refer Slide Time: 12:13)

Now, we are going to discuss the rings with ids because if the leader election is not

possible in basically the anonymous rings, then we are going to consider the ring

structure with the unique ids. So, ids are assigned out of the natural numbers and so, each

processor has a unique id now.

(Refer Slide Time: 12:45)

So, now we are going to discuss about that ids; how the ids are assigned. So, is

specifying a non anonymous ring where each processor is assigned a unique id is

illustrated in this particular diagram and I will be explaining you through this particular

example. So, you start with the a smallest id from here smallest id is 3. So, let us note

down this particular ring in this manner and list ids in a clockwise order. So, clockwise

order goes like this.

So, first id is 3, then the next id is 37 and furthermore the next id is nineteen then 4 and

finally, 25. So, just see that this particular structure if this rule is followed, then it will

give a oriented ring and this will be a non anonymous oriented ring structure which we

have seen as an example because and this particular structure we will be used to design

the leader election algorithm.

(Refer Slide Time: 13:54)

So, non anonymous algorithm if it is uniform; that means, there is one state machine for

every ids and no matter what the size of the ring; that means, the algorithm in this

particular setting does not know the size of the ring that is n is not known non

anonymous it knows it knows the value of n there is one state machine for every id and

every different ring size and basically, it will form an non uniform non anonymous

algorithm.

(Refer Slide Time: 14:42)

So, these definitions are tailored for leader election in the ring. So, now we are going to

discuss the first leader election algorithm with the message complexity of the order n

square and this algorithm is called LeLann Chang Roberts algorithms that is LCR

algorithm. So, it is a simplest algorithm and it will give by start point to understand the

leader election algorithm and design in the distributed system. So, here every node every

processor will send the value of its id to the left in a form of a message. So, we can see

this particular example. So, every processor will have the ids and that is unique id

because it is a non anonymous ring. Now send the value of its id. So, it will send a

message with its id 0 to the left.

Similarly, this also we will send and everyone will send its values now when an id j here

from the right from the right it will receive the message and if the j that is the idea of

incoming message is greater than its id of a receiving process, then it will forward to the

left here in this case this situation is not considered this; this situation is not happening

the second j is equal to id that is also not satisfying and if j is less than id here, then it

will do nothing; that means, 0 will not be this particular message will be swallowed and

this particular structure will go on. So, you see that in this structure here this will also be

swallowed this message will be swallowed this message will be swallowed, but this will

continue and this again will be continued over here. So, 2 message of size 2 will continue

over here again and this will also forwarded. So, 2 will come again over here from where

it is being originated.

(Refer Slide Time: 17:13)

So, the correctness of the algorithm goes like this that it will always elect a processor

with the largest id and the message containing largest id passes through every processor

and basically comes over here again as I told you the message of a processor id with the

highest id will goes along the entire ring and comes back to it and it will be elected as a

leader and all other nodes then after electing a leader it will send a message that is called

termination message and all other node will become a non leader . So, the time which is

taking here in this algorithm is of the order n and the message complexity if will analyze

it depends on how the ids are arranged. So, the largest id travels all around the ring that is

it will basically result in into n different propagation of the messages second largest id

will travel until reaching the largest one third largest id will travel until reaching the

largest or a second largest and so on.

(Refer Slide Time: 18:31)

So, we can understand using this particular example the message complexity that is order

n e square. So, just see that here the id which is that is the highest id that is the id which

is number 4 will be propagated along all the ring and will come back over here again

similarly the second lowest id that is 3 will propagate and it will not pass through p 4

why because it is having the highest id, it will swallow this particular message.

(Refer Slide Time: 19:12)

So, these particular messages are being flowing. So, if we see if we count how many

messages are total number of messages is being flown you can see that the highest id will

basically result into n different messages the next largest id will have n minus 1 n minus

2 n; so, on up to n. So, if we if we sum up it will become the n square. So, this particular

topology will incur into n square number of messages. So, that is why the message

complexity of this algorithm is of the order n square. So, we go of n square; that means,

this particular topology this example of a topology, we have seen where exactly n square

messages are required maybe in other topologies, it will require even less than n square,

but in no situation the number of messages will exceed n square and that is why the this

particular algorithm guarantees that it will take n square number of messages.

(Refer Slide Time: 20:22)

So, again this particular analysis we can see from this particular diagram that in any

admissible execution, it will send no one more than order n square messages that is

return over here more over there is an admissible execution in which the algorithm sends

theta n square messages that we have seen in the previous example, here also in this

example you can see consider a ring.

Where the identifiers of the processors are 0, 1, 2 and so on; they are being numbered

and they are ordered in figure in this particular figure. So, in this configuration the

messages of the processor with identifier i is send exactly i plus 1 times and the total

number of messages including the n termination message is n plus n is the termination

total number of termination message and this is the total number of messages which is

send by the other processor to elect a leader and in this particular ring can see this

particular structure that a processor that is an id n minus 1 will basically navigate for n

different messages will propagate n different messages. So, a particular processor I will

basically propagate total number of exactly identifier is propagated i plus 1 times.

So, if we sum up this particular formula again it will give theta n square and this theta n

square; that means, in this particular topology, it will basically incur n square messages.

(Refer Slide Time: 22:12)

So, this particular algorithm never incurs more than n square in any admissible execution

now the question is can we develop an algorithm which will use fewer than these number

of messages that is order n square message. So, that is an idea and we are going to see

another algorithm. So, the next algorithm will be based on this idea is that why. So, many

messages are used can we reduce the number of messages. So, here it is the idea is

saying they try to have messages containing smaller idea travel smaller distances in the

ring.

So; that means, smaller ideas are not going to elect as a leader; so, why they are

travelling more distances they can be contained in a smaller region and only the ids with

a higher ids or larger ids are allowed to travel across all the ring. So, this way we can see

in number of messages.

(Refer Slide Time: 23:13)

In this particular algorithm and with this idea an another algorithm, we are going to see

that is called big O of n log n messages that is leader election algorithm is given by

Hirschberg and Sinclair HS algorithm, it is well known algorithm. So, we are not going

to describe this algorithm in more details. So, to describe this algorithm we first define

the k neighbourhood of the processor pi in a ring to be the set of processors that are at a

distance at most k from pi in the ring that is either to the left or to the right.

Note that the k neighbourhood of a process includes exactly 2 k plus 1 processor to

understand this through a diagram. So, you can see a ring of 3 nodes in this particular

node the k neighbourhood of this particular processor pi one neighbourhood of this

process is nothing, but the left and the right only 2 processors will be there similarly if

this particularly instead of 1, if it is k neighbourhood. So, many number of k number of

processors will be on the left k number of processors on the right. So, this means that a k

neighbourhood of a processor includes 2 k plus 1. So, here one neighbourhood will

include 3 processors. So, this algorithm that is big O of n log n messages leader election

algorithm will require the knowledge of k neighbourhood of a particular processor pi for

all the processors.

So, the algorithm operates in the phases. So, it is convenient to start numbering the

phases with 0. So, in kth phases; so, 0 phase we have seen. So, in kth phase it is

convenient to start the numbering with the phase 0 and kth phase a processor tries to

become a winner of that phase to be the winner it must have the largest id in its 2 k

neighbourhood only the processors that are winner in the kth phase continue to compete

in the k plus oneth phase thus fewer processors exceed to a higher phase until at the end

only one processor is the winner and is elected as the leader of the whole ring.

(Refer Slide Time: 25:48)

So, let us see more detail about phase 0 and then you will see about phase k. So, in phase

0 in more detail phase 0 each processor attempt to become a phase 0 winner take the

same example.

So, in phase 0 every processor will initiate and try to become a phase 0 winner let us

have these ids 0, 1 and 2. So, to become each processor attempts to become a phase 0

winner and sends a probe message containing its id to its one half neighbourhood that is

to each of its 2 neighbours left and right if the identifier of the neighbour receiving the

probe is greater than the id oh in the probe it swallows the probe otherwise it sends back

the reply message. So, here in this case it is one and it is 2. So, the id of the processor

receiving the probe message with the id 0 as having higher id, it will swallow it similarly

here also it will swallow; it will not give back the reply, but here in this case if node 2

sends the probe message.

Both the message will send back the reply sends back the reply if the processor received

the reply from both its neighbours, then the processor becomes the phase 0 winner. So,

here processor 2 becomes phase 0 winner because it has received the replies from both of

its neighbours.

(Refer Slide Time: 27:47)

And we will continue to phase 1. So, we are going to describe about if a processor is

winner in a phase k minus 1 and now it is eligible to be participating in phase k. So,

phase k that is in general in phase k a processor pi that is the phase k minus 1 winner

sends the probe message with its ids 2 raised power k neighbourhood that is one in each

direction each such message traverses 2 raise power k processors one by one a probe is

swallowed by a processor if it contains an id that is smaller than its own id that we have

also seen in the phase k.

If a probe arrives at the last processor on the neighbourhood without being swallowed

then that last processor sends back a reply message to pi if pi received a reply from both

the direction it becomes a phase k winner and it continues to the phase k plus one. So,

the processor that receives its own probe message terminates the algorithm as a leader

and sends the termination message around the ring. So, if we can see if this is the ring.

So, every every node will have 2 raise power k neighbourhood for a phase k. So, 2 raise

power k neighbourhood on the left 2 raise power k neighbours on the on the right if that

particular message goes through the last node in each of these 2 power k neighbourhood

on the left and right; if it is basically going through up to the last one.

Then it will send back the replies and it will the winner of k phase of the algorithm it will

be eligible to proceed to the k plus oneth phase.

(Refer Slide Time: 29:53)

So, that I have explained you the phase k of this particular algorithm the entire algorithm

is explained over here. So, here you can see that the probe structure we will have 3

different probe will have 3 different information the first information is called id the id of

the node which has initiated on a particular phase and in which phase it is initiating.

So, that phase number is given and the hop count because it has to travel through to 2

raised power k neighbourhood. So, here it is let us say 2 raised power k hops how many

hops and this is the phase number which phase message it is it belongs to and the ids

which particular. So, in this particular send message you can see that the probe has one 2

3 different arguments 3 arguments means id of that particular processor.

Which has initiated that particular leader election in phase 0 and it is going to send to one

hop neighbourhood to the left and right that we have seen now upon receiving this

particular probe with jk and d j means the idea of the probe message k means the kth

phase and d means the number of hops it has traverse so far. So, upon receiving this

probe from the left and it will also receive from the right it will perform 3 different cases

now if j is equal to id; that means, the message which has traverse along all along all the

nodes or a processors of the ring and came back to the same point.

Then that mode will be terminated and elected as the leader. Now if j that is the receiving

message his id or his id is greater than the node which is receiving this particular

message and also the number of hops is less than 2 raised power k then it will send the

probe to the to the to the left and to the right as well depending upon from where the

message it is going to received. Now if the number of hops is reached to 2 raised power k

on the left side or on the right side that will send the replies message; so, it will send the

reply in that case because it has reached 2 power k hop neighbours, then it will send the

reply message. So, it has to decide based on whether it has reached 2 power k the last

node of 2 power k neighbourhood.

If it has then basically it will send a reply otherwise it will keep on forwarding the probe.

So, all 3 cases are given now upon receiving the reply from the left and the right if j is

not equal to id then it will send the reply to the right; that means, it will keep on

forwarding the replies if it is not equal to id and if it is id then the reply will be will be

reached if already receive already received reply from j from the right and from the left

then it will be the winner of phase k and it will start the probe for k plus oneth. So, the

structure will be the same node which is the winner of kth phase will go and send the

probe at k plus oneth phase or initiate the k plus oneth phase and basically the number of

hops, it will basically begin and this hop count is initialize to or is being sent to 1 and

keeps on incrementing till it reaches 2 raised power k and there.

These 2 conditions are being checked whether the probe is to be move forwarded or it is

to be returned back to the originator. So, this algorithm is explained which is called a

leader in O big O of n log n leader election algorithm in an in a ring.

(Refer Slide Time: 34:32)

So, the pseudo-code which appears in the algorithm 5 we have just seen that algorithm 5

the phase k for a processor corresponds to the period between its ending of a probe

message in line 4 or a line 15 that I have explained with the third parameter k and it

sending of a probe message in line 4 or 15 with the third parameter k plus one the details

of sending the termination message around the ring have been left out in the code and

only the leader terminates the correctness of the algorithm follows in the same manner as

in the simple algorithm that is over n square algorithm because they have the same

swallowing rules.

It is clear that the probes of the processor with a maximal ids are never swallowed

therefore, this processor will terminate the algorithm as the leader on the other hand, it is

also clear that no other probe can traverse the whole ring without being swallowed

therefore, the processor with the maximal identifier is the only leader elected by this

particular algorithm.

(Refer Slide Time: 35:48)

So, again more description about this algorithm; so, each processor now here in this

algorithm tries to probe successively larger neighbourhoods in both the directions that is

the size of the neighbourhood doubles in each phase. Now if the probe reaches the node

with the largest id the probe starts, if the stops if the probe reaches end of the

neighbourhood, then the reply is sent back to the initiator that have I explained you in the

algorithm.

(Refer Slide Time: 36:29)

If the initiator gets back the replies from both direction, then it goes to the next phase

that also we explained in the algorithm if the processor receives a probe with its own id

then it will elect itself a leader the same thing is explained here in this particular picture.

So, this is now you can very easily identify this is phase 0; phase 0 means this is the one

neighbourhood one hop neighbourhood because 2 raised power 0 is 1 this is the phase 1.

So, here 2 raised power one that is 2 so; that means, here this particular neighbourhood;

that means, it is basically 2 hop neighbourhood in both the directions in the phase 1.

Similarly this is the phase 2 in the phase 2 ra 2 raised power 2 is equal to 4.

So, here you just see that this is 4 neighbours on the left 4 neighbours on the right and

the probe will go the 4 different hops and the replies has to come back then only pi has to

be winner if the pi has to be the leader then it has to be elected as a leader in phase 0 then

it has to be elected in phase 1 it has to be elected in a in a phase 2. So, if it is a ring of

this size then pi will be the leader elected in this particular algorithm; this is explained

over here.

(Refer Slide Time: 38:05)

Now, this correctness is similar to big O of n square that I have explained you now

message complexity of this algorithm the message complexity of this algorithm belongs

to a particular phase and is initiated by a particular processor. So, now, we are going to

count how many different messages are being used to elect a leader here in this case and

how it becomes order of n log n.

Now, the probe distance in a particular phase k is 2 raised to power k that you know

already. So, the number of messages initiated by a processor in phase k is at most 4 times

2 raised power k why because 2 into 2 raised power k probes messages and 2 into 2

raised power k replies messages if you count it becomes 4 times 2 raised power k

different messages in a phase k which is being initiated by a processor pi. So, we have to

count from any such processors will be there in a phase k.

(Refer Slide Time: 39:15)

So, how many processors will be initiating in a particular phase k that we are going to

compute now for phase for k is equal to 0 that is for phase 0 every processor will

basically initiate. So, it becomes n; n different processors are there now if the phase is

not one is more than or more than 0, then every processor that is the winner in a phase k

minus 1.

Does the winner means the largest id in its 2 k minus 1 neighbourhood.

(Refer Slide Time: 39:59)

So, that we are going to comput. So, how many num maximum number of phase k minus

1 winner occurs when they are occurs. So, we can see this when these particular phase k

minus 1 winners are basically packed densely in this particular manner. So, what is

basically? So, if the phase k winner between 2 phase k minus 1 winner let us say pi on

the left it has 2 k minus 1 processors. So, another processor pj on it is right, again, it will

have 2 k minus 1 processors. So, so if this kind of packing is done all around the ring

structure.

So, then we can count how many different phase k minus 1 winner will be there. So, that

particular count if we see the total number of phase k n minus 1 winner will be at most n

divided by 2 raised power k minus 1 plus 1 plus 1 means including this and 2 k plus one

this. So, total number of winners in a phase k minus 1 will be this particular figure that is

explained over here using this formula.

(Refer Slide Time: 41:27)

Now, next thing is what happened just pause start. So, how many phases are there that

we are going to now find out now. So, at each phase the number of phase winners is cut

approximately in half from n divided by 2 k minus 1 plus 1 2 n divided by 2 k plus 1.

So, after the approximating log n phases only one winner is left out that is precisely max

phases log n minus 1 plus one. So, if you want to understand; this particular how many

different phases will be there. So, you can see that how many. So, it will be if we go

back. So, total number of phase k minus 1 winner is at most n raised power.

(Refer Slide Time: 42:53)

So, total number of phase k minus 1 winners is at most n raised power of 2 k minus 1

plus one. So, these are total number of phase k minus 1 winners. So, in the end there will

be only one winner. So, this will become n is equal to 2 to the power k minus 1 plus one

when total number of winners is only one and if we move this one over here it will

become n minus 1 is equal to 2 raised power k minus 1. So, if you take log out of it both

the side.

So, that becomes k is equal to total number of phases will be will be log n minus 1 plus

one. So, this particular expression we have explained you how this particular expression

came and this will represent how many number of phases the total number of phases in

the algorithm; we have computed.

(Refer Slide Time: 44:16)

Now, we are going to count how many messages are required in this particular algorithm;

how many total number of messages are flown to decide a leader in this particular

algorithm. So, we can see here 4 n messages will be required in the phase 0 then when

the leader is decided then it will send a termination message that will be n different

messages in all other cases. So, it will be the summation like this. So, 4 into 2 raised

power k different messages will be there that will be a probe and reply message and it is

bidirectional.

So, basically 4 times 2 raised power k that we have seen in the previous formula also and

these are basically the number of phase 2 k minus 1 winners and total number of phases

will be the summation one 2 log n minus 1 that we have seen. So, if we count total

number of messages. So, that is what I have explained total number of messages it comes

out to be this figure is 5 n and this can be approximated as 8 n log n plus 2 which will be

of the order n log n.

(Refer Slide Time: 45:52)

Now, the order n log n algorithm is more complicated we have seen than order n square

algorithm why because; but it uses a fewer messages in the worst case.

So, it works both in the synchronous and asynchronous case. So, can we reduce the

number of messages even further than n log n? So, we can see here that it is not possible

why because there is a lower bound which is proved as n log n in this particular model

which is called asynchronous model. So, in asynchronous model this algorithm is

optimal because n log n is the lower bound which is proved here in asynchronous model.

(Refer Slide Time: 46:36)

So, it is the theorem says that any leader election algorithm for asynchronous rings

whose size is not known a priori has the lower bound omega big omega n log n message

complexity holds also for the unidirectional rings. So, both LCR; LCR means big O of n

square algorithm and HS; HS means oh big O of n log n are compared are companion

based algorithm that they use identifies only for comparisons.

In synchronous networks big O of n message complexity can be achieved if general

automatic operations are permitted and if the time complexity is unbounded.

(Refer Slide Time: 47:20)

So, to summarize of the leader election in the message passing system which is the ring

with the non anonymous ring having the distinct ids assigned the we can see the

complete scenario as an overview like this that there exist algorithm and the nodes have

unique ids that we have seen after seeing the impossibility results then we have evaluated

them according to their message complexities that is in the; if it is a synchronous ring

that we will take n log n messages if it is synchronous ring.

Then; it will take order n theta n messages under certain conditions otherwise it will be

theta n log n messages all bounds are asymptotically tight.

(Refer Slide Time: 48:13)

So, the conclusion; so, this particular lecture provided in depth study of the leader

election problem in the message passing system for a ring topology we have presented

different algorithm for leader election problem by taking there are different cases like

anonymous non anonymous rings uniform and non uniform ring synchronous and

asynchronous ring. So, in the upcoming lectures we will discuss about causality and the

time concept in the distributed system why because we have already seen that distributed

system is not having a common global clock yet how the events are to be ordered for

that; we are going to see in the next lecture more details about it.

Thank you.

