
Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture – 22
Case Studies HDFS

 (Refer Slide Time: 00:16)

HDFS and spark,

(Refer Slide Time: 00:22)

The Hadoop distributed file system HDFS, introduction Hadoop provides a distributed

file system and a framework for the analysis and transformation of very large data sets

using map reduce paradigm. An important characteristic of Hadoop is the partitioning of

data and computation across many thousands of hosts, and executing application

computations in parallel close to their data.

A Hadoop cluster scales computation capacity, storage capacity and IO bandwidth by

simply adding commodity servers. Hadoop clusters at yahoo spans 25000 servers, and

store 25 petabytes of application data with the largest cluster being 3500 servers 100

other organization worldwide report using Hadoop. So, let me give you a more intuitive

notion of Hadoop file system and Hadoop environment. So, Hadoop is an environment

where HDFS is a part of the Hadoop.

So, Hadoop also contains map reduce and other different application which are going to

be used in this particular framework which is called a Hadoop. So, Hadoop file system is

a particular file system which basically will be using the cluster setup for large scale

computations, these computations will be designed using the programming environment

such as map reduce or a spark.

So, when we say large scale computation; that means, the data set is of large scale data

sets. So, this particular platform is good enough to support the computation of a large

data set size. So, the cluster is basically nothing, but a set of hosts which are connected

through the ne2rk. So, it is scalable in the sense as we grow the number of nodes without

any problem of ne2rk bottlenecks this particular kind of cluster set up is scalable.

In contrast to a particular system becoming more powerful by adding more hardware it

has a bottleneck of the scalability here the scalability is basically ensured in this

particular kind of application. In this particular setup how this particular large scale

computation can be made applicable, how this can be exploited for large scale

computation. So, we are going to discuss the first the Hadoop environment and in

particular the Hadoop distributed file system which will exploit or which will be running

over this cluster setup.

So, HDFS will exploit this kind of; that means, cluster setup and this will be a point of

discussion in this particular lecture.

(Refer Slide Time: 03:57)

So, Hadoop is an apache project all components are available via the Apache open source

license. Yahoo has developed and contributed to 80 percent of Hadoop which comprises

of HDFS map reduce and other components are also there such as, H base was originally

developed at powerset, now a department at Microsoft such as hive also is developed at

the facebook pig zookeeper and all these particular different variants are basically using

this Hadoop file system and its basically the applications.

(Refer Slide Time: 04:35)

So, HDFS is a Hadoop file, Hadoop distributed file system is a part of Hadoop project.

So, we are going to discuss this particular component here in this particular lecture.

(Refer Slide Time: 04:58)

So, HDFS is a file system, component of Hadoop while the interface to HDFS is

patterned after the UNIX file system faithfulness to the standards were sacrified in

favour of improved performance of for the applications at hand.

HDFS stores file system metadata and application data separately, with that we will see

how this particular data and metadata are 2 separate entities here in HDFS and it

manages them as in the other distributed file system like PVFS, Lustre and HDFS stores

metadata on a dedicated server called the name node. So, there is a server which is called

a name node in HDFS file system. So, name mode stores the metadata.

So, application data are stored on the other servers called the data nodes there will be a

data nodes, many data nodes 1, 2 and so on up to n, but here there is only one name node

all the servers are fully connected and communicate with each other using TCP based

protocol. So, HDFS design assumption single machine tends to fail that is it is prone to

fail, failing due to the different components also failing like hard disk power supply and

so on.

(Refer Slide Time: 06:.35)

So, more machines means the increase failure probability will be there and data also does

not fits in a single node. So, basically the so this will is a motivation to have a cluster

which is basically a scalable and also is basically architecture can be a fault tolerant. So,

the architecture of HDFS will involve one name node and many data nodes.

(Refer Slide Time: 07:03)

As name node is concern it stores the metadata, metadata is where the file blocks are

stored that is the namespace image and basically also the edit and that is operation log

also is maintained secondary name node that is it also basically keeps track off or

maintaining the secondary name node which is also called as a master or a shadow

master.

So; that means, if this particular master fails this particular shadow is basically up to date

available and it will switch to the master in that case that is called secondary name node.

Now, another thing is called data nodes this is also called chunk server stores and

retrieves the file blocks that is the data blocks by the client or a name node, it can be this

particular information about where these blocks are stored can be obtained through the

name node by the clients these data nodes they report to the name node with a list of

blocks that they are restoring.

So, the function of the data nodes which are many in number they are reporting with the

help of a heartbeats with the name with the name node. So, it reports to the name node

these data nodes they report to the name nodes with a list of blocks that they are

restoring. So, whenever a request comes by the client to store the data nodes or through

the name node whenever there is a request comes. So, they will be storing and this

information will be reported back to the name node so that the metadata can be updated.

So, name node in HDFS name node is an hierarchy of files and directory.

(Refer Slide Time: 09:01)

Files and directories are represented on a name node by the inodes the file content is split

into a large blocks that is of 128mb and each block of a file is independently replicated at

many data nodes the name node maintains the namespace tree and the mapping of the

file blocks to the data nodes.

Let us see this particular concept of name node and if let us say a file let us say one is

having the data blocks as 257 and another file 2 having the data blocks as 4, 6. So, this is

the name node and there will be a data nodes which is storing the blocks of the file now

here there is a replication of each block by default it is 3.

So; that means, if block number 2 is stored. So, out of 3 any 2 out of 4, let us say 4

blocks we are having out of 4 data nodes any 3 of them will be selected to store the first

one that is block number 2, similarly block number 5 will be stored on any 3 of them. So,

if one node crashes or is down or failed. So, a particular data is already available in 2 of

the other nodes. So, that is why the availability in spite of failure is assured, that is what

we have discussed here.

So, HDFS clients wanting to read the file first contacts the name node for the locations

because it maintains the locations of the data blocks comprising the file and then reads

the block contains from the data node closest to the client. So, once the client so the

client contacts to the name node and we know knows the file blocks and then the

addresses of the data nodes. So, then client in turn will contact to the data nodes and can

access the file data that is in the form of data blocks.

So, when writing a data the client requests the name node to nominate the suit of 3 data

nodes that I mentioned to host the block replicas, client then writes the data directly to

the data node in a pipeline fashion.

(Refer Slide Time: 11:55)

That means it will push the data along 3 data nodes which is given by the name node and

then single write operation will write them.

So, HDFS keeps the entire name space in ram.

 (Refer Slide Time: 12:17)

The inode data and the list of blocks belonging to each file comprise the metadata of the

names of the name system called the image; the persistent record of the image is stored

in the local hosts native file system called the check point. So, name node also stores the

modifications a log image called the journals in the local host native file system. During

restarts the name node restores the name space by reading the name space and replaying

the journal.

Now, the another important component here is called data nodes, each block replicas on a

data node is represented by 2 files in the local host native file system.

(Refer Slide Time: 12:53)

The first file contains the data itself and the second file is the blocks metadata including

the checksum for the block data and the blocks generation stamp. Now during startup

each data nodes connects to the name node and performs the handshake.

(Refer Slide Time: 13:28)

The namespace ID is assigned to the file system instance when it is formatted,

consistency of software version is important because incompatible version may cause

data corruption or a loss data node that is newly installed and without any namespace ID

is permitted to join the cluster and receive the clusters namespace.

So, after the handshake the data node registers with the name node and data nodes

persistently stores their unique storage ID’s, date node identifies the block replicas in its

position to the name node by sending the block report, subsequent block reports are sent

every hour and provides the namespace name node with the update up to date view of

where the block replicas are stored on the cluster.

 (Refer Slide Time: 14:24)

During the normal operation data nodes send heartbeats to the name node that I have told

you, the default heartbeat interval is 3 seconds and if the name node does not receive the

heartbeat from the data node in 10 minutes, the name node considered considers the data

node to be out of service and the block replicas hosted by that by that data node to be

unavailable.

So, heartbeats from the data node also carry information about the total storage capacity,

fraction of the storage in use and the number of data transfer currently in progress. The

name node does not directly call data nodes; it uses the replica heartbeats to send the

instruction to the data nodes. So, these commands are important for maintaining the

overall integrity and therefore, it is critical to keep heartbeats frequent on the big

clusters.

(Refer Slide Time: 15:19)

HDFS client, third component is the HDFS client user application access the file system

using HDFS client, similar to the most conventional file system HDFS supports

operations to read, write, delete files operations to create and delete directories also.

When an application reads the file HDFS client first asks the name node for the list of

data nodes that I have explained and this interaction can be seen over here.

(Refer Slide Time: 15:45)

So, client has to first contact to the name node because name node has the metadata and

through that metadata it can directly access those set of data nodes which contains those

block information data blocks. So, it first writes in a pipeline, this is called a pipeline and

then issue a write command.

(Refer Slide Time: 16:20)

So, all these particular data blocks are made or basically is written and then this

particular information is basically informed to the name node about the writing of that

particular data in a cluster.

Similarly, as far as file read is concerned. So, HDFS first step is to open a file and then

contacts the name node to get the block locations and then perform the read operations

on these block locations. Now since this particular blocks are stored in a 3 different

copies. So, it will try to read any of these 3 copies if it is not successful in this read then

it may read the another set of copies or may send simultaneously 2 different read out of 3

and once this particularly read operation is complete then it will close it.

In write it has to inform to the name node when the file is closed, but in read it will just

close without informing. So, here this is the anatomy of a write. So, when once this write

is complete then it has to inform to the name node that the entire operation is complete.

So, here we see that for file writing it will it will contact to the name node, name node

will inform about the data nodes and the data nodes then it will basically write packets,

write files and this will be done in a pipeline fashion. It is shown as a pipeline of the data

nodes and once it is done then basically the acknowledgement will flow back and then

HDFS client will also inform the name node about that write operation is complete.

 (Refer Slide Time: 18:01)

Now there are other issues because here the HDFS is having the information about the

rack. So, most of the decisions of data node placement or a block placement on a data

node basically is having the awareness of the position of the nodes in which rack and

which center all these information are required. So, that the availability in spite of failure

is to be ensured in a much comprehensive manner.

Thank you.

