
Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture - 20
Google File System (GFS)

(Refer Slide Time: 00:15)

Google File System; GFS.

(Refer Slide Time: 00:17)

Introduction to a file system; a file system determines how the data is stored and

retrieved. Distributed file systems manage the storage across the network of machines;

added complexity is due to the network.

GFS, HDFS are distributed file systems. Before we start the topic of this particular

lecture, let me introduce you to the motivation and the background for Google file

system. So, Google is storing it is data over a large number of computers, which are

having the storage within it. So, it is exploiting the storage of large number of computers

which is also called as commodity hardware. This particular large number of computers

which are connected through the network, are now used to store the information which

the Google requires for its application.

Now, once having stored this information on a large number of computers; maybe

thousands or more than a large number of clients required to access these particular data

which is stored in the distributed environment simultaneously without any problem for

this Google has devised a file system which is called as a Google file system and after

that HDFS file system, hadoop has also made the same kind of file system with different

terminologies within it.

So, let us understand this Google file system. So, in the Google file system description

that is why we are going to make why, because the distributed file system existed earlier

also, but as far as modern day applications are concerned, which involves the large data

sets or large amount of information which is to be stored which cannot be stored at one

place, which is stored in a distributed systems. If it is stored; then how many clients can

simultaneously access it, so for that we are going to see a thing which is called a Google

file system or a file systems which will facilitate not only to store the file over a large

with the help of a large number of computers and also it will support how the large

number of clients can access to that stored information in a distributed system.

(Refer Slide Time: 03:47)

So, the introduction says like this Google processes it is data in a computing cluster.

Google makes their own servers use commodity class CPUs running customized versions

of Linux machines. We need to say that the cluster comprises of several servers is called

a cluster maybe they are networked with each other. Now each of these servers they are

running the Linux operating system within it.

So, Google will make use of this particular scenario, to implement the Google file

system. Now this will seek to maximize performance and how this is specifically

measured is not public information, then novel switching, power supply all these are

generic problems of infrastructure that is going to solve if the commodity hardware’s are

used instead of being machines like supercomputers, that is; the philosophy of a Google.

So, GFS utilizing these commodity hardware’s and it does not require a very big

infrastructure to support it.

So, let us go for the introduction of a GFS.

(Refer Slide Time: 05:11)

GFS is scalable distributed file system for large data intensive applications shares many

of the same goals as previous file systems such as performance, scalability, reliability

and availability. They were there in earlier file system also here also they are also will be

there, but in addition to that it is going to basically support the large data intensive

applications.

So, the design of GFS is driven by four key observations, that is; if the commodity

hardware’s are there, then there is a possibility that the failures will be a norm, it is not

an exception. Now another important thing is the file size is a big huge. So, it is huge

files which are basically are going to be supported in your modern applications. Third

one is the mutation of the files and the benefits of co-designing the applications and the

API is to access all that things are basically these are the main point to be supported in a

Google file system.

(Refer Slide Time: 06:26)

.

Google file system assumptions the hardware failures are a common that it has become a

non why? Because, if the commodity machine they are inexpensive commodity

machines they are prone to failures and they may fail also. Similarly, as far as the files

are concerned, now here modest numbers of huge files are there and see these files of a

bigger size are now very common in this kind of environment. So, hence they are to be

supported optimally whereas, small files are not that very common. So, basically it will

not focus on optimizing about topped small files.

The workloads are two kinds mostly they are of reads and writes. So, writes means the

files are written that is a big data set is generated once in the form of writes and after that

most of the time it will be read only operations. So, two kinds of operations are

supported. So, large streaming reads of 1 Megabyte or more and small random reads, so

random reads small random reads will not be more focused. So, only the; it is large

streaming reads or a sequential read operations will be supported here.

So, sequential append to a file by 100 of data producers will become an important issue

as far as handling workloads are concerned. High sustained throughput is more important

than the latency. So, the response time for individual read and writes operation is not

very critical here in this kind of scenario.

(Refer Slide Time: 08:16)

Google file system design overview. So, in Google file system these are the following

components which will be participating and realizing this file system operation. The first

one is called a master, there will be a single master and which will handle the centralized

management. The second entity here is called file which are stored as the chunks. So,

chunks are the another important entity in Google file system.

Chunk is nothing but a fixed size of 64 MB is called a chunk and the file is nothing, but

file is stored in the form of a chunks. So, if a file is bigger than 64 MB, then file may

contain more than one chunks and the entire data of the file will be stored. Reliability

through replication these chunks are stored on the commodity hardware which are prone

to the failures. So, the only way to overcome from these failure fault tolerant is basically

go for the replication. So, by default the replication number is 3; that means, a particular

chunk is replicated in three different chunk servers.

Now, the next entity is called data caching due to the large size of data sets data is not

cached or is not required to be cached at the client as well as at the chunk servers;

however, the chunk servers are running the Linux file system locally. So, Linux local

caching is good enough to be supported here no external or no extra management of

caching is supported here in Google file system. As far as the interface is concerned; it is

suitable to the Google applications or Google apps it will create delete, open, close, read,

write is snapshot record appends. These are the different interfaces which will support

these operations that we will see in this part of the discussion.

Now, Google file system architecture. Let us go through this architecture there will be a

single master which is shown over here.

(Refer Slide Time: 10:52)

There will be single master and there will be a several clients as far as and the data will

be stored on several servers which are called as chunk servers. Now the data is not

flowing across client and master that you can see, rather the data is flowing from client to

directly to the chunk servers which store these particular data. So, data flow does not

flow across the GFS master.

(Refer Slide Time: 11:32)

Now, let us go and see what the master does in Google file system.

(Refer Slide Time: 11:55)

So, the role of the master; master basically is nothing, but I Metadata server; that means,

it maintains all file system Metadata; that means, information about them the data where

it is stored or information about the file system is called metadata and that is being

maintained at the master.

So, basically master will deal with handling four of the file name in space, handling file

to chunk, mapping and it will also handle chunked location information, keep all the

metadata in the master; masters first memory. Let me explain you through this particular

example. So, the filename is space; that means, once the client gives a file name and file

name and the directory will form the file name space filename in space is maintained by

the Google file system master so and second information which is maintained by the

master is about the chunk servers.

So, 2 important information which is maintained by the master, the first one is basically

called namespace, and the second one is about the chunk servers. This information’s the

metadata is stored at the master. So, file to chunk mapping will be handled using these

two information by the master chunk location information will be given. So, the file

contains the file is stored in the chunks. So, those information will be provided through

the chunk servers by the master that information also chunk placement information is

also with the master. Now it will keep all the metadata in the master’s pasty space.

Now, location of the chunk center replicas master does not keep the persistent record and

operation logs for persistent and memory is maintained, pull it from the chunk servers

master it as the monitor no cost meaning to say that the master does not maintain the

information about the chunks or the location of the chunks. Location of the chunks are

maintained by the chunk servers; however, the master continuously pulls from the chunk

servers and fetch this information whenever is required. So, it is not going to store at the

master level.

So, master does not keep this persistent information of the chunks and the replicas. So,

operations for the persistent and the recovery for that log is maintained. So, all the

informations or the metadata which is stored in the master a log will, basically be

maintained for it is persistence so; that means, whenever there is a failure at any end at

the end. So, master will use this log information or log will be used to restore or recover

it.

(Refer Slide Time: 15:13)

So, master has the metadata, server it will monitor. So, it will monitor as I told you that

master does not keep the information about the chunks. So, the master and the chunks

servers, so master used use this particular heartbeat messages to detect the state of these

chunk servers and communicate with these chunk servers periodically. Now, whenever

master requires the information of the chunks which are managed by the or which are is

closed by the chunk servers, using these heartbeats and piggyback this information to

fetch the details of the chunks.

And so, that is why this will communicate; master will communicate with the chunk

servers periodically and also not only to get the health of the chunk servers, but also

fetch the information of chunks norm it. Now, master is basically having a centralized

controller it will also monitor the system-wide activities, it will manage the chunks

replicas in the whole system.

So, there is a single master which will simplify the design of the system. It will control

the chunk placement using the global knowledge, because the master is having the

complete knowledge of the chunk servers and the placement of the chunk can be decided

globally.

(Refer Slide Time: 16:43)

So, the bottlenecks are to be resolved, in the sense the client do no read write data

through the master; that means, client need not have to do the read and write for the data

operations through the master. So, master is free. So, the clients can directly access the

data from the chunk servers.

Now, the clients cache the metadata only. So, clients typically ask for the multiple

chunks in the same request and the master can also include the information for the

chunks immediately following those requests. So, these particular provisions will free the

master to be referred for read and write through operations from by the client. So, client

is not required to access the master for each and every single operation for data related

operations can directly be handled between client and the chunk service master is not

basically involved in it.

(Refer Slide Time: 18:22)

Now, caching metadata that is; cast on the client after being written from the master;

only kept for this; for a specific period of time to prevent by stale data. So, the caching

for metadata is only done not the exact data. So, file caching clients never catch the file

data as I explained to you earlier. So, chunk servers never catch the file data, because

Linux buffer does that caching for the local file. So, that will be sufficient in Google file

system.

So, file working sets are too large and that is; why it is not required also to be cache why,

because a big size files which are streamed as far as the operations are concerned are not

required to be cached so; obviously, when caching is not there, then it will allow; it will

simplify all the problems or issues of having a cache with the problems like cache

coherence.

(Refer Slide Time: 19:06)

Now, GFS chunk;

(Refer Slide Time: 19:20)

So chunks is the most important part of as far as the design is concerned. So, the chunk

size is 64 MB. So, chunk is stored as the plain Linux file on a chunks server. So,

advantage of keeping large chunk size is that, it will reduce the client and master

interaction, as I told you earlier the previous slide. So, one request per chunk suits the

target workload. Client can cache all the chunked location for multi-terabyte working set.

So, only the metadata is cached for the chunks so; obviously, if this particular chunk size

will reduce the size of the metadata also which has to be kept in on the master. So,

disadvantage of keeping a large sized chunk is that chunk servers can become the hottest

part for some popular files. So, this particular problem can be can be handled in future

also with some point of research that the clients who are already accessed those

particular data can become the servers for the other clients and hence the hotspots can be

removed, but this is for the future scope of improvement.

So, this particular hotspot problem is very practical and it requires some innovative

solutions to be overcome.

(Refer Slide Time: 21:08)

So, chunk locations master does not keep persistent record of the chunk replica locations.

As I mentioned in the previous slide master polls chunkservers about their chunks at the

startup. Master keeps up to date through periodic heartbeat messages. Master,

chunkservers easily kept in sync when the chunk servers leave, join, failed, restart.

So, once if the master is not keeping the information about the chunk replicas locations,

then it will allow the master and the chunk server to be kept in sync at all the point of

time easily. By not keeping the chunk replicas locations at the master, now the master

and the chunk server can easily be in the sync with the help of the heartbeat messages.

So, now when the chunks are out of the master, then basically these chunk servers can

leave join fail restart at every regular interval and can be handled separately out of the

master. So, chunk servers have the final words over what chunk it has.

Operation log persistent record of critical metadata changes is stored in the log. Critical

to the recovery of the data, changes to the metadata are only made visible to the clients

after they have written to the operation logs operation log, replicates on a multiple

remote machines. So, before responding to the client operation, log must be must have

been flashed locally and remotely.

(Refer Slide Time: 22:42)

So, master recovers it file system from the checkpoint and the operation. So, all these

aspects how the check pointing and the recovery we have already covered so that

concept is used. So, that the master becomes the fault tolerant. So, the master is

becoming inactive or a faulty then it will be recovered with the help of a checkpointing

which is maintained in the stable storage or with the help of a mirroring of the master

node.

(Refer Slide Time: 23:30)

Now, consistency model atomicity and correctness of refining space are ensured by the

by the namespace locking. Now, after successful data mutation writes or read appends,

changes are applied to the chunk in the same order on all the replicas. In case of a chunk

server failure at the time of mutation, it is the garbage collected at the soonest

opportunity. So, regular handshakes between master and chunk servers helps in

identifying the fields chunk servers and detect the data corruption by checksumming. So,

this simplifies more complicated consistency model this will good enough to solve the

consistency issues system interactions leases and mutation order.

(Refer Slide Time: 24:05)

So, master grants the chunk lease to one of the replicas and this particular replica is

called a primary replica. So, all the replicas follow the serial order picked by the by the

primary. So, leases times out at 60 seconds and leases are revocable.

(Refer Slide Time: 24:42)

Let us see the interactions. So, the first step is the client asks the master which chunk

server holds the current lease of the chunk and the locations of the other replicas this is

the first level interaction. This interaction happens when a client wants to access a

particular file with the file name and a data at a particular location or a index, knowing

the size of the chunk, it can this particular index is nothing, but an offset in a file which

particular inside a file that data which is required by the application having calculated the

index and the file name this particular message will be sent to the master.

(Refer Slide Time: 25:20)

So, master asked the, so the client asked the master about which chunk servers holds that

current lease of the chunk and the location of other replicas. Master will respond by

giving the identity of the primary and the location of the secondary replicas. So, this

information will be used by the client and the data will be pushed this is the data red line

shows the data will be pushed directly in a linear fashion to the primary and secondary

replica servers.

So, this particular flow of the data will use the simple network bandwidth it will not

follow any topology. So, it basically it will follow a linear fashion the data will be

pushed here to all the replicas, because now the client knows the primary as well as

secondary replicas and it will form a chain and the data will be post.

Fourth step says that once all the replicas have acknowledged the receipt of the data, the

client sends the right request to the primary; now here it says to right. So, data which is

pushed to all the replicas servers that is primary and secondary replicas now the client

will issue right command to the primary replica.

So, the primary is now having the leads of all the for maintaining all the replicas. So, the

primary assigns a consecutive serial number to all the mutations it receives and it will

provide the serialization and it applies the mutations in that serial order. So, the data in

the form of the chunks will get assigned the serial order or serial number from the

primary from the primary replica and these serial numbers are given or assigned and

these secondary replicas will use that serial number to order all the notations. Now the

primary forwards the right requires to all the secondary replica they apply the mutations

in the same serial order which I have told you.

The step number six says that that all the secondary replicas, they will reply to the

primary replica that they have completed the operation. Now having completed all the

operation the primary replica the primary replies to the client with the success or if it is

not success then some error message it will provide to the client.

(Refer Slide Time: 29:24)

So, that was the system interactions. So, system interactions has two parts one is called

data flow; that means, data will be pushed through the network in a linear fashion among

all the three servers that is primary and to secondaries. So, the data is pipelined that is

called pipelining and data is pipeline over TCP connections a chain of chunk servers

form the pipeline. So, each machine forwards the data to the closest machine that is

called data flow.

Now, second level interaction is the atomic record appends GFS provides an atomic

append operation called record append and in the snapshot means that it can make a copy

of a file or a directory tree almost instantaneously. Let us see the read algorithm.

(Refer Slide Time: 30:02)

So, the application originates the read request, here to the GFS client indicating the file

name and the byte range. So, out of this particular byte range and knowing the chunk

size this client will compute the chunk index and copying the file name as it is. So, inside

file the client will compute the chunk index and this particular pair the file name and

exchange index will be given to the master in the master intern will provide a metadata

for the chunk that is called chunk handle.

And also the replicas, where that chunk is stored. This information will be passed on

from master to the client.

(Refer Slide Time: 31:02)

Now the client, then directly send the messages that is the chunks handle and the byte to

range direct to the chunk servers and these chunk servers will fetch the data from the file

and will be given to the client and then the data will be passed on to that application that

becomes the read algorithm.

Let me read out all the steps.

(Refer Slide Time: 31:36)

So, the application originates the read requests. GFS client translates the request from

file name, byte range to the file name and chunk index, and send it to the master that I

have explained. The master responds with the chunks handle and the replica locations.

Now the client picks the location and sends the chunk handle and a byte range with the

request to read to that particular location. Chunkservers send the requested data to the

client and the client forwards the data back to the application.

(Refer Slide Time: 32:13)

So, that becomes the read algorithm about write algorithm. I have earlier explained

during the system interactions, but let us go ahead again. So, the application originates

the write request. GFS client translate the request from file, data to the file name, and

data to the chunk index, and send it to the master that we have already seen in the read

algorithm.

Now, master responds with a chunk handle and the replica location that also we have

seen in the read algorithm. Now, the client pushes the write data to all the locations that I

have already explained in the previous slide of the system interactions. The data is stored

in the chunkservers in its internal buffers. When the client sends the write command to

the primary memory, then the data will be looted then the data will be written.

(Refer Slide Time: 33:09)

So, the primary determines the serial order for the data instance is stored in its buffer and

writes the instances in that order to the chunk. Primary sends the serial order to the

secondaries and tell them to perform the write operation.

Secondaries perform the right operations to the primary request. So, primary response

back to the client. Now, if these write fails at one of these chunks servers, then the client

is informed and this write operation will be retried again to complete the write

operations.

(Refer Slide Time: 33:44)

So, let us see this particular interaction.

(Refer Slide Time: 33:46)

So, the data will be pushed, data will be pipelined to the primary and both the secondary

servers.

(Refer Slide Time: 34:12)

The primary then issue the sequence numbers like this and these sequence numbers will

be now maintained as far as the sequence number order is maintained for storing that

particular data for the write operations. This particular serial order is maintained in the

chunk and they are being communicated to the; from primary to the secondary storage.

(Refer Slide Time: 34:54)

So, having written that sequence order messages in into the chunks. The primary the

secondary is respond to the primary about the completion of the operation and there upon

the primary responds to the client about the success.

(Refer Slide Time: 35:10)

Now, record append operation. As I told you that the file is created once and then it is not

updated randomly, but the append operation is supported. So, the application; so let us

see about the append operation which is supported here. So, we have seen the read we

have seen the right now we have seen the append operation algorithm. Application

originates the record a parent request. GFS client translates the question send it to the

master. Master response with the end client pushes the right. So, primary checks if the

required fits in the specified chunk. If the record does not fits, in the specified chunk,

then primary will pad the chunk tells the secondary to do the same, and inform the client.

Client then he tries the append with the next chunk and if the require fits.

(Refer Slide Time: 36:02)

Then the primary appends the record, tells the secondaries to do, receives the response

from the secondaries, and send the final response to the client that is data to all the

locations. So, it is same as almost same as the write operation, but it will be written at the

end that is called the append operation.

(Refer Slide Time: 36:20)

Master operation namespace management and locking locks are used over the namespace

to ensure proper serialization. Read and write locks are used. GFS simply uses the

directory like file names. GFS logically represents this namespaces a lookup table

mapping full path name to the metadata.

So, if a master operates operation involves a file name, a path name, read locks are

acquired on all these path names and either the read or a write lock on a full path name is

being applied.

So, let me mention that the file name and its index is stored not in a form of a directory,

but in a form of the lookup table which is being hashed. So, using this particular change

the namespace lookup is very very efficient here in Google file system.

(Refer Slide Time: 37:20)

So, chunk replica placement creation in each of initially empty chunks. Use the under-

utilized chunk servers; which are spread across the racks and re application that is started

once available the replicas fall below the setting. So, re application is performed. So,

that. So, that all the empty servers are properly utilized. Rebalancing the master

rebalance is the replica periodically examines the distribution and moves the replica for a

better disk space and load balancing approach.

(Refer Slide Time: 37:54)

Garbage collection deletion logged by the master. So, the file rename to the hidden file,

deletion timestamp kept. So, all these particular provisions are there for garbage

collection why, because if a particular chunk is failed, then basically another chunk is

already in place. So, those failed chunk will become garbage. So, these garbage will be

periodically scanned and checked periodic scan of masters chunk namespace is also

done.

(Refer Slide Time: 38:32)

So, it Stale replica detection using this scanning is all already done.

(Refer Slide Time: 38:40)

Fault tolerance so this is also very important aspect in Google file system. So, fault

tolerance is achieved with a fast recovery, chunk replication and master mechanisms.

Fast recovery master and chunk servers are designed to restart restore in a few seconds.

Chunk replication across multiple machines, across multiple racks is being made. So,

master mechanisms keeps log of all changes made to the metadata, periodic checkpoints

of the locks are maintained log and checkpoints are replicated on the multiple machines.

So, whenever a master state is replicated on a multiple machines shadow master for

reading data if the master is particular down.

(Refer Slide Time: 39:22)

Now, for further reading on this particular topic you can refer to them to the paper by

Sanjay Ghemawat; the Google file system which is available at the Google link.

(Refer Slide Time: 39:38)

Conclusion: GFS is a distributed file system that supports large-scale data processing

workloads on commodity hardware. GFS has different points in the design space:

component failures are a norm and optimize for a huge files or a large data sets operation

or a computation. GFS provides fault tolerance by replicating the data, fast and automatic

recovery, and doing the chunk replication. So, GFS has made a very simple, centralized

master that does not become a bottleneck in this particular problem.

Thank you.

