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Lecture 17: Self-stabilization. Preface: recap of previous lecture. 
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In previous lecture we have discussed about message ordering, group communication

and application level multicast algorithms. Content of this lecture: in this lecture we will

discuss the concept of self-stabilization, related issues in the design or self-stabilizing

distributed algorithms and systems, and Dijkstra’s self-stabilizing token ring system.
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Introduction:  concept  of  self-stabilization:  the  idea  of  self-stabilization  in  distributed

computing was first proposed by Dijkstra in 1974. The concept of self-stabilization is

that, regardless of its initial state the system is guaranteed to converge to a legitimate

state in a bounded amount of time by itself without any outside intervention. So, the non-

self-stabilizing system, may never reach the legitimate state, or it may reach a legitimate

state  only  temporarily.  The  main  complication  designing  self-stabilizing  distributed

system  is  that,  nodes  do  not  have  the  global  memory  that  they  can  access

instantaneously. Each node must make decision based on the local knowledge available

to it, and actions of all the node must achieve the global objective.
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The  definition  of  legitimate  and  illegitimate  state  depends  upon  the  particular

application. Generally all illegitimate states are defined to be those states which are not

legitimate.  Dijkstra also give an example of the concept self-stabilization,  using self-

stabilizing token ring system; that is called Dijkstra’s self-stabilizing token ring system.

So, for any token ring, when there are multiple tokens or there is no token, then such a

global state are known as illegitimate state. When we consider distributed systems, where

a large number of systems are widely distributed and communicate with each other using

message passing or shared memory approach, there is a possibility for these systems to

go into  an  illegitimate  state.  For  example,  if  a  message  is  lost,  the  concept  of  self-

stabilization can help us recover from such situation in a distributed system; so again

before going ahead. So, Dijkstra gave an example of a token ring system. In a token ring

system you know that, only one token is called privilege which circulates, and if it is

circulates then it is legitimated state in the system.

Now, in contrast to this, if this particular token has, this particular token ring has two

privileges, or two tokens, or more than one token, or it does not have a token at all, or a

token is  lost.  This  particular  situation  is  illegitimate  state  as  far  as  this  definition  is

concerned. So, this particular state which is illegitimate state, if it goes to a legitimate

state  automatically  without  external  intervention,  then  it  is  called  a  self-stabilizing

system. If it is a token ring system, then it is called self-stabilizing token ring system.



In distributed systems you are seeing that lots of processors are connected through the

communication network, and they exchange through the message communication.  So,

there is a possibility that nodes may fail down or the messages may lost; obviously, these

conditions  will  basically  lead  to  a  illegitimate  state  in  the  distributed  system.  How

automatically, how the self-stabilizing distributed system will recover? Automatically to

a legitimate  state  is  basically  a  design issue which Dijkstra  has opened through this

particular system. That is called a self-stabilizing system.

So, the concept of self-stabilizing is very useful to understand about the self-stabilizing

system, and the design for different distributed systems, based on this particular concept.

(Refer Slide Time: 05:01)

So, let us explain the concept of self-stabilization using an example. Let us take a group

of children and ask them to stand in a circle. So, after a few minutes you will see almost

a  perfect  circle  without  having to  take  any further  action.  In  addition  you will  also

discover that the shape of this circle is stable, at least until you asked the children to

disperse. If you force one of the children’s out of this particular position, the others will

move accordingly and they will form a bigger circle.
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So, keeping the shape of the circle unchanged in all the cases. So, in this example the

group of children’s, children build a self-stabilizing circle. So, if something goes wrong

with the circle, they are able to rebuild the circle by themselves without any external

intervention. So, we have seen a example of a self-stabilizing circle, and by a group of

children, and the legitimate state and illegitimate state, all these things we have seen.

So, this particular example motivates us to understand about self-stabilization in different

type  of  systems,  especially  in  a  distributed  system.  Now  the  time  required  for

stabilization varies from experiment to experiment, depending on random or the initial

position; however, if the field size is limited in the case of, the children building a circle

is limited this particular time will be bounded.

The algorithm does not define the position of the circle in the field. So, it will not always

be the same. The position of each child relative to each other will also vary.
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So, there are several factors, meaning to say that particular factors are going to basically

take how much time the system is going to stabilize. So, the self-stabilization, principle

applies to any system build on a significant number of components, which are evolving

independently from one another, but which are cooperating or competing to achieve a

common goal and example is the distributed system.

So,  this  applies  in  particular  to  large  distributed  systems,  which  tend to  result  from

integration  of  many subsystems,  and components  developed separately, at  the earlier

times or by different people.
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So,  in  this  lecture  we will  first  present  the  system model  of  distributed  system and

present the definitions of self-stabilization. Next we will discuss Dijkstra’s seminal work

and  use  it  to  motivate,  the  topic.  And  then  we  will  discuss  by  issues  arising  from

Dijkstra’s original presentation, as well as several related issues in the design of self-

stabilizing algorithms and systems.

(Refer Slide Time: 08:20)

Let us see the system model. The term distributed system is used to describe the set of

computers  that  communicate  over  the  network,  variants  of  distributed  systems  have



familiar fundamental coordination requirements among communicating entities, whether

they are computer processor or processes.

Thus  an  abstract  model  that  ignores  the  specific  setting,  and captures  the  important

characteristics  of  a  distributed  system  is  usually  used.  In  a  distributed  system each

computer run a program composed of executable statement. Each execution changes the

content of the computers logical memory. And abstract way to model a computer that

executes a program is to use, state machine model.

(Refer Slide Time: 09:06)

A  distributed  system  model  comprises  of  n  state  machines  called  processors  that

communicate with each other. So, each processor is nothing, but a state machine, and

these particular processors will communicate with each other also, and these processor

will make a transition among these states. So, the example here is basically comprising a

set of n state machines, called processors which will communicating with each other.

Usually  denoted  i-th  processor  denoted  by  P  I,  the  neighbor  of  processor  are  the

processors. So, here we are calling it as, the left and the right neighbors, and the system

we are considering to be in a anticlockwise directed.

A processor can directly communicate with its neighbors, a distributed system can be

conveniently represented by a graph, in which each processor is represented by a node,

and every pair of neighboring nodes are connected by a link.
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That I have shown in the figure. The communication between neighboring processors

can be carried  out,  either  by message passing or shared memory, communication  by

writing in and reading from the shared memory usually fits the system with processors

that are geographically close together; such as multiprocessor computers.

Message  passing  distributed  system,  distributed  model  fits  both  processors  that  are

located close to each other, as well as they are widely geographically distributed, and

they  are  connected  over  a  network.  In  the  message  passing  model  neighbors

communicate  by  sending  and  receiving  messages.  Message  passing  communication

model will should contain a queue, and which is represented as Qij for the messages

from Pi to pj.
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It is convenient to identify the state of a computer or a distributed system at a given time.

So, that no additional information about the past of the computation is needed in order to

predict the future behavior, of the computer or a distributed system. A full description of

the message passing distributed system at a particular time consists of the state of every

processor and content of every queue.

(Refer Slide Time: 12:01)

The term configuration, or a configuration is uses that; such a description configuration

is noted by a set that is c, which contains the states where Si is the state of a P i and Q i j,



where i is not equal to j is a state of a Q; that is the messages sent by Pi to Pj, but not yet

received.  The  behavior  of  a  system consists  of  a  set  of  states,  a  transition  relation

between those states and a set of fairness criteria on the transition relation.

(Refer Slide Time: 12:34)

The  system  is  usually  modeled  as  the  graph  of  processing  elements,  where  edges

between the elements model the unidirectional or bidirectional communication links that

I have already explained. Let N be the upper bound on n that is the number of nodes in

the system,  the communication  network is  usually  restricted,  to  the neighbors  of the

particular node. So, here the diameter and the big delta, denotes the upper bound on that

diameter.
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A network is static, if the topology remains fixed, dynamic the links and networks can go

down and recover later on. So, self-stabilization is guaranteed eventually, in spite of all

the  faults.  Shared  memory  model,  is  basically  we  are  not  going  to  consider  two

neighboring nodes, having access to a common data structure variable is not possible in

distributed systems.

(Refer Slide Time: 13:23)

So, the algorithms are modeled as the state machine, performing the sequence of steps. A

step consists of reading input and the local state.
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And then performing the state transition and writing output. Communication can be by

exchanging messages over a communication channel. So, a related characteristics of a

system model is, the execution semantics, if the self-stabilization. This has encapsulated

within  the  notion  of  scheduler  or  a  daemon,  also  called  demon one under  a  central

daemon at most one processing element is allowed to take i step at a point of time.

(Refer Slide Time: 14:11)

So,  we  will  see  that,  these  particular  assumptions  are  basically  well  defined  for  a

particular  self-stabilizing  system,  definition  of  self  is  stabilization.  We have  seen  an



informal  definition  of  a  self-stabilization  at  the  beginning.  Formally, we define  self-

stabilization for a system S with respect to a predicate P, or its set of global states, where

P is intended to identify its correct execution. So, the states satisfying the predicate, P is

called the legitimate state, and those not satisfying the predicate p are called illegitimate

state.  We  use  the  term  safe  and  unsafe  interchangeably  with  the  legitimate  and

illegitimate respectively. So, a system S is self-stabilizing with respect to the predicate P,

if it satisfied the following two properties, which are most important.

So,  the  first  property  is  called  the  closure  property;  says  that  P is  closed  under  the

execution of S; that is once P is established in S, it cannot be falsified. Second one is

called convergence starting from an arbitrary global state, the predicated system defined

by P; that is called S is guaranteed to reach a global state satisfying P within a finite state

of transitions. So, the closure and convergence are two important properties in that self-

stabilization.
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So, we define the self-stabilization or stabilization for a system S, and self-stabilization is

basically a part of the stabilization. So, self-stabilization is a special case of stabilization.
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Now, then there is a reachable set, often when the programmer writes a program, he she

does not have a particular definition of a safe and unsafe states in mind, but develops a

program to function from a particular set of start states. Such situation it is reasonable to

define, as states those states that are reachable under normal program execution from the

set of legitimate start states.

(Refer Slide Time: 16:21)

These  are  referred  to  as  reachable  sets.  Transient  failure  set.  Transient  failure  is

temporary or short lived and does not persist. The transient failure may be caused by



corruption  of  local  state  processes,  or  by  corruption  of  channel  or  shared  memory.

Transient failures may change the state of a system, but not its behavior.
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Issues in design of self-stabilization algorithms: a distributed system comprises of many

individual units, and many issue arise in the design of self-stabilization, algorithms in

distributed system some of the main issues, are number of states in which each of the

individual unit in a distributed system, uniform and non-uniform algorithms, central and

distributed demon, reducing the number of states in a token ring, shared memory models

mutual exclusion and cost of self-exploration.
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The  mentioned  issues  can  be  explained  with  the  help  of  Dijkstra’s  landmark  self-

stabilizing token ring system. So, his token ring system consisted of set of n finite state

machine connected in a form of a ring. I told you previously, and he defines the privilege

of a machine, to be, the ability to change the, to change its state. So, that particular node,

which is called a privilege node, has the ability to change its state, and Dijkstra assumes

initially  that there is  only one privilege at  a particular  point of time, but later  on its

change the model, and we are going to see all both models in this part of the discussion.

So, this ability is based on the Boolean predicate that consists of the current state and the

state of its neighbor. So, when a machine has a privilege, it is able to change its current

state, which is referred to as a move. So, furthermore when multiple machines enjoy a

privilege at a same time, the choice of the machine that is entitled to make a move is

made by a central demon, which arbitrarily decides which privilege machine will make a

move. So, these are the important concepts which I will again highlight before going

ahead.

So,  first  thing  is,  in  a  given self-stabilizing  in  a  system,  there  must  be  some set  of

privileges, and these privileges are subject to the Boolean predicate, and it will change

the state from illegitimate state to the legitimate state, following two rules which we have

seen; closure and the convergence. So, furthermore when multiple machines, they enjoy

more than one machines having a privilege at the same point of time, then the central



demon will come, and this will decide, among many privileges, one of these privileges

will be activated, or will be allowed to make a boom at particular point of time.
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A legitimate  state  must  satisfy the  following constraints.  There  must  be at  least  one

privilege in the system; that is liveness or no deadlock. Every move from legal state must

again put the system into a legal state.

So, from one legal state the system will make a move, and go to another legal move; that

is called a closure property. So, during an infinite execution, each machine should enjoy

a privilege an infinite number of times.
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So, that is the no starvation condition. So, given any two legal states, there is a series of

moves that change one legal state to another; that is called the reachability. So, Dijkstra

considered, a legitimate or illegal state as one, which exactly one machine enjoys the

privilege as I told you that only one privilege is initially considered by Dijkstra. This

corresponds to a form of mutual exclusion, because privilege process is the only process

that is allowed in the critical section. Once the process leaves the critical section it passes

the privilege to the other nodes; the number of states in each of the individual units.

(Refer Slide Time: 20:51)



So, the number of states that each machine must have for the self-stabilization,  is an

important issue. Not only important issue, but it is a design issue as well.  So, in the

previously we have seen how to minimize this number of states, and that will be the one

of  the  most  important  design  issue  in  self-stabilization.  So,  Dijkstra  offered  three

solutions  for  a  directed  ring,  with  n  machines,  each  having  K  states.  So,  the  three

solutions, where in the first one assumes that the number of states is same as n, or more

than that;  so greater than or equal to n. The second solution assumes, the number of

states is equal to 4, and then you will see that k is equal to 3. That means, the Ghosh has

proved later on that, with the number of states is equal to 3, it is possible to design a self-

stabilizing system.

So, Ghosh proved that minimum of three-states is required in a self-stabilizing ring. So,

in all three algorithms by Dijkstra’s assume the existence, of at least one exceptional

machine, that behaved differently from others.
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Let us see the first solution where the number of states, is assumed to be greater than or

equal to the number of nodes, or the processors in the system. So, this is very loose

bound on the number of states. So, for any machine we use the symbols S L R, S means

its own state, and L is by state of its left neighbor, and R is the state of its right neighbor

on the ring respectively. So, meaning to say, that if this is the ring and this is by state. So,



if this is the current state. So, this is S, its left neighbor is L, and its right neighbor is R

respectively.

Now, Dijkstra’s assumed one machine which is called an exceptional machine, the code

of exceptional machine is like this. If l is equal to s; that is the state of left is equal to the

state of the current state, then S the state of S, or the current state will be modified as S

plus 1 mod K; the other machines which are not an exceptional machine. So, there if the

state; that is left is not equal to the current state, then the current state will be same as the

left state.
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Now, in this algorithm except the exceptional machine 0 all other machines follow the

same algorithm in the ring topology, each machine compares its state with the state of its

the anti-clockwise neighbor and if they are not same, it updates its state to be the same,

as that of its anti-clockwise neighbor.

So, if there are n machines, and each of them is initially at a random state, drawn from

possible  set  of  the  states,  then  all  machines  except  the  exceptional  machine;  that  is

machine 0 whose states are not the same as their anti-clockwise neighbor are said to be

privileged, and there is a central demon which will decide, which among those privileged

machine will be allowed by the system to make a move.
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Suppose machine 6 in a system which has the number of mod or more than 6, makes the

first move. It is obvious that it state is not the same as that of the machine 5, and hence it

has, it had the privilege to make the move. And finally, sets, its state to be the same as

that of machine 5. Now machine 6 loses the privilege, as its state is same as that of its

anticlockwise neighbor machine.

So, let us see the example of this particular description right over here, before we take it.

So, if this machine 6 is going to make a move. So, its neighbor is 5 which is at the left. If

it is going to make a move then, the current state of 6 is not equal to current state of 5.

So, it will change by state accordingly, let us say that the state of 5 is let us say 0, and the

state of 6 is 1 . So, now, the state of 6 will be changed to 0. So, finally, sets the state to be

the  same  as  that  of  machine  6,  that  we  have  done  here.  Now  machine  6  loses  its

privilege, as its state is same as that of anti-clockwise neighbor 5, that I have explained.

Now, next, suppose machine 7 whose state is different from the state of machine 6. Let

us say its state is 1, is given the privilege. It is having a privilege why, because its left

neighbor is not same as its current a state; that is 0 and one they are different. So, hence

it  will  be a privileged.  So, it  results  in making the state of the machine 7 as that of

machine number 6. So, it will become 0 in this case. Now machine 5 6 7, they are in the

same state; that is equal to 0 in the above example.



So, eventually if you see the progress, all the machines eventually will basically make a

transition, and will have the same state; that is 0, then what will happen. So, eventually

all the machines will be in the same state in the similar manner. So, at this point, only an

exceptional machine that is a machine 0 will be the privileged, as its condition L is equal

to S will be satisfied. So, there exists a machine 0, whose left and right, whose left and

the current state both are same here. Then according to the exceptional machine code, if

they are same then then they have to make a move, and if state is the same as that of anti-

clockwise neighbor.

(Refer Slide Time: 28:23)

Now, there exists only one privilege or a token in the system; that is machine 0 makes a

move and change its state from S to S plus 1 mod K. So, that machine in that case, 0 will

make a move and its state will become 1, according to this particular formula. And this

will trigger, the next state which is left which is 0. So, they are not same and so on. This

particular way the token circulates, or the moon circulates around the ring.

So, this will make the next machine 1, here as I shown you, is privileged as its state is

not same as in the anti-clockwise neighbor; that is here. Thus it can be interpreted as a

token currently with the machine 1. So, machine 1 will change it to 1 and so on. So, now,

it will go to the 2, 2 will is having 0; it will become a privileged and so on. So, the moves

will move in this manner, the clockwise way. Although the ring is basically identified in

a anti clockwise manner.



So, machine 1, as per the algorithm changing state, to the same state of that machine 0

and move to the machine 2 and so on. So, this is a simple algorithm, but requires the

number of states which depends on the size of the ring, which may be awkward for some

applications.
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So, I explained you that, if let us say mod 6 is going to make a move, move this if it is a

privileged, and privileged means its left, is not equal to the current state that is S . So, let

us assume that it is having 0, state is 0, and this state is 1, so they are not equal. If they

are not equal, then S will be assigned to L. So; that means, one will be changed to 0, and

both will be now having the same state.

Now, let us assume 7, which is having the state 1. Now these two states are not same. So,

this will become privileged. This is no longer privileged because its left is, same as the

current state. So, this will become a privileged. So, if it is privileged, then again it will

set its state to the same as the left one so; that means, here S will be assigned to the left,

left is 0. So, this way eventually all the nodes will be able to change the state, and that is

the same state, but there will be an exception 

So, according to the convention, there is a non or there is an exceptional node. So, this let

us say 0 is an exceptional node, and exceptional node says that, the code of a exceptional

node says that, if this particular left S is equal to left, S is not equal to left. Then basically

this will change to 1. So, exceptional machine says that if both are equal, then S will be



incremented by 1. So, if both are equal to 1. So, it will be changed to 1 in this case. Now

this a non-exceptional node, a non-exceptional node, will see that its left neighbor is 1.

So, it is going to change, and it will become, it will change its a state, and it is no longer

privileged. So, the privilege will be here why, because both S is not equal to L and so on.

So, just see that all the states will now being rotated, and change to 1, and again finally,

come back and found out that this is an exceptional node, and it is now privileged, and it

will change again from 1 to 0 and so on. So, keeps on rotating, the token in this particular

manner, and this is the legitimate state. So, you just see that whenever there is a move, it

will goes from one legitimate state to another legitimate state according to the programs

which are defined.
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Now there is another solution which says that the previous solution was has considered

that K is greater than or equal to n; that means, the numbers of states are too much,

depending upon the number of nodes which are there in the system.

Now, the second solution says that, let us assume K is equal to 3. So, the states for the K

is equal to 3. So, the states for the K will be 0 1 and 2 which are assigned to a three-state

machine,  to  every  node  of  a  system.  So,  in  the  first  algorithm,  there  is  only  one

exceptional machine; so by reducing the number of states from n to 3. Now the number

of privileged nodes also will be increased from 1 to 2 over here.



So, there will be two machines which are privileged machine, or exceptional machine

code. So, these are called machine 0, and which is machine 0 is also called a bottom

machine. So, here if you see a ring structure; let us see that this is a 0, so it is a bottom

machine and its number is 0 and here this will be a machine number n minus 1, and it is

called a top machine, and they are two machines which are exceptional machines.
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So, let us see the program, in this particular problem setting where K is equal to 3. So,

the bottom machine as I explained you will have this kind of code, if S plus 1 mod 3 is

equal to R, R means the neighbor on the right side, then S is equal to S minus 1 mod

three, and the top machine which is the machine number n minus 1. If left neighbor is

equal to right neighbor, and the left plus 1 mod 3 is not equal to the current state of the

machine, then current of the state of the machine is increment, is basically the left plus

one.

And all other machines in this case; either of these two rules are applied whichever is

correct is being applicable; if the current state plus 1 is equal to the left neighbor state,

then state will be same as the left neighbor. Otherwise if S plus 1 mod 3 is equal to the

right, then basically S is equal to right.
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So, in this algorithm the bottom machine 0 behaves as follows; that we have seen. Thus

the state of the bottom machine depends upon the current state, and the state of its right

neighbor. The condition S plus 1 mod 3 covers three possible states, for S is equal to 0 1

and 2. Thus we have S plus 1 mod 3, is equal to 1 2 and 0; these results in the following

three possibilities. So, when S plus 1 mod 3 is equal to 1, when S plus 3 mod 3 is equal

to 2, and when it is 3, and it is same as R, then S will be 0 1 and 2.

So, let us see that when S is equal to 0. Here if you see S is equal to 0, and R is equal to

1, then the state of S will be changed to S minus 1 that is 2, when S is equal to 1 here,

and R is equal to 2 then S will be changed to 0, because S minus 1, S minus 1 1 minus 1

will become 0. Similarly in this condition S minus 1 means 1. So, this particular case is

considered for the bottom machine; that is machine number 0 will behave in this manner.
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Similarly we can see about the top machine; that is the machine number n minus 1 will

behave according to this rule. So, the top machine depends upon both its left and right

neighbors.  The condition  specifies  that  the left  neighbor  L and the  right  neighbor  R

should be in the same state here. And L plus 1 mod 3 should not be equal to 2 S, the

other condition connected by an end. Note that L plus 1 mod 3 is 1 2 and 0, when L is

equal to 0 1 and 2 respectively. Thus the state of the top machine will be assigned to 0,

and it will be assigned to 0, and it will be assigned to 0 and it will be assigned 2, from 1

to n 0 according to this particular rule.

(Refer Slide Time: 38:46)



Now, all other machines behave as follows, as I explained you, while finding out the

states of the other machines machine 1 and machine 2 let us for example, below we first

compare the state of, state with its left. So, when S is equal to 0, and L is equal to 1. So,

S is equal to 0, this will become 1, and L is also 1, both are equal, then S will be assigned

to L. If it is not assigned to L, then basically the second rule will be basically considered

and so on.
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So, if the given conditions are not satisfied, then the machine compares its state with its

right  neighbor  that  I  explained  in  the  previous  example.  So,  the  same execution  of

Dijkstra’s three-state algorithm for a ring of 4 processors is shown in the next table.

Machine 0 is the bottom machine, and machine 3 is the top machine. The last column the

table gives the number of machines chosen to make a move, initially 3 privileges exist in

the machine, the number of privileges decreases only 1 privilege is in the left.
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So, initially you see that there are three privileged machine are there, and then it will be

moved to two privileges, and finally, one privilege at a time onwards. Now, as far as the

machine is concerned. So, let us go back again. So, machine 0 is the bottom machine,

and machine 3 is the top machine. So, this is the bottom machine, and machine 3 is the

top machine. These two codes are different, and these are the other machines which will

follow a different code.

So, on the last column, here you can see that the machine to make a move is basically

mentioned over here; that means, these are the privileged machines. If more than one

privileges are there, then central demon will select one, and it is allowed to make a move.

So, here out of two, this is allowed to make a move in all other cases, the same machines.
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Same  previous  node  will  be  allowed  to  make  a  move  in  this  particular  diagram.

Observations: so we can make the following observations, there are no deadlocks in any

state. The closure property satisfied, no starvation is also satisfied, reachability is also

there.
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So, all four constraints for a legitimate state are satisfied. So, the system is stabilized.

Few other works in the field of self-stabilization are mentioned here for further reading.
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Conclusion  self-stabilization  has  been  used  in  many  areas,  and  the  areas  of  study

continues to grow. Algorithms have been developed using central and distributed demons

and uniform and non-uniform algorithms. The algorithm that assumed the central demon

can usually be easily extended to support distributed demon.

So, these algorithms are still useful when applied to the distributed system. In this lecture

we have discussed the concept of self-stabilization, system model, related issues in the

design  of  self-stabilizing  algorithms  and systems,  and also  discussed  Dijkstra’s self-

stabilizing token ring system.

Thank you.


