
Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

 Lecture - 15
Termination Detection

Lecture 15 Termination Detection preface recap of previous lecture.

(Refer Slide Time: 00:19)

Previous lecture we have discussed the basic concepts of distributed minimum spanning

trees and also discussed the algorithms that is GHS algorithm, content of this lecture. In

this lecture we will discuss about ‘Termination Detection’ and a set of representative

algorithms for termination detection. Termination detection based on concepts of

snapshot based on weight throwing and his spanning-trees etcetera these different

algorithms which we are going to see in this lecture.

(Refer Slide Time: 00:55)

Introduction termination detection problem was brought to the prominence in 1980 by

the famous people, a fundamental problem to determine if the distributed computation

has terminated, meaning in the sense that the distributed computation consists of the

cooperation of many processors and the corresponding their communication channel.

So, the distributed application which runs on different processors required to know when

the entire computation is completed this is a fundamental problem as far as distributed

computation is concerned this task of finding the termination detection is a non-trivial

task.

Because there does not exist a global time and also there does not exist a global state and

the processes no process has the complete knowledge of the global state. In this

particular setting finding out the termination of a distributed application is a non-trivial

task. A distributed computation is globally terminated if every processes locally

terminated and there is no message in transit between any processes, given this definition

locally terminated is state is a is state in which a process has finished it is execution and

will not restart any action unless it receives a message. In termination detection problem

a particular process must infer when the underlying computation has terminated and it

has a different application it has wider application in the distributed system applications.

(Refer Slide Time: 03:03)

So, Introduction termination detection algorithm is used for this particular purpose that is

the messages used in the underlying computation are called basic messages and the

messages used for the purpose of termination detection are called control messages.

So, in termination detection algorithm we are going to use 2 different type of messages.

So, the messages which are normal computational messages called ‘basic messages’ and

the messages which will basically lead to the termination detection messages are called

the ‘control messages’.

Termination detection algorithm must ensure the following that is first is the execution of

termination detection algorithm cannot indefinitely delay the underlying computation.

Second is the termination detection algorithm must not require additional new

communication channels between the process so; that means, without disturbing the

underlying computation how the termination detection algorithm works and how the

termination is detected is going to be an important issue for designing such algorithms.

(Refer Slide Time: 04:22)

Now, the system model which is going to be assumed in our discussion for designing the

transmission detection algorithm, at any given time a process can be in one of the 2 states

that is the active, and the idle state. So, if it is in active state; that means, it is doing the

local computation and idle means where the process has temporarily finished the

execution of it is local computation and will be reactivated only on the receipt of the

message from another process. So, these states basically are not fixed they are changing.

So, an active process can become idle at any point of time and idle process can become

active only on the receipt of a message from any other process only active process can

send the messages. Now a message can be received by a process when the process is

either active or idle. So, on the receipt of a message the idle process can become a active

that is shown here.

So, the sending of a message and the receipt of a message occur as atomic actions.

(Refer Slide Time: 05:48)

Now we are going to define the termination detection formally let p i t denote the state

that is either active or idle of a process i at the time instant t. Let c i j at time t denotes the

number of messages in transit in the channel at the instant t from pi to pj.

A distributed computation is said to be terminated at any time instant let us say t 0 if and

only if for all processes at time t 0 by the state is idle and for all the channels between i

and j at time instants t 0 is having not having any messages; that means, it is an empty

channel or there is no message in the channel thus the distributed computation is

terminated if and only if all the processes have become idle and there is no message in

transit in any of these communication channel then the state of the global state is

basically defined as the termination detection or is a termination state.

(Refer Slide Time: 07:06)

So, Termination Detection Algorithm there are various termination detection algorithms

available in the literature. So, these algorithms are different based on what topology they

are going to assume and also how they are going to basically address the basic and the

control message flows and without the destruction of the basic computation how the

termination is detected.

So, Dijkstras algorithm is ring based termination detection algorithm that is given first in

1983 after that Topor has given the termination detection algorithm for the distributed

computation that we are going to study.

So, there are different kind of algorithms and Huang also has given a transmission

detection algorithm based on weight throwing that we are going to cover in this part of

the lecture.

(Refer Slide Time: 08:03)

Termination detection algorithm using distributed snapshot by Huang in 1989 that we are

going to understand first the algorithm assumes that there is a logical bidirectional

communication channel between any every process. Communication channels are

reliable, but non-FIFO. So, message delays are arbitrary, but they are finite main idea of

this algorithm is that when a process goes from active to the idle it issues a request to all

the other process to take the local snapshot and also request itself to take the local

snapshot.

So, when a process receives this request if it agrees that the requester became idle before

it itself then it grants the request by taking a local snapshot for the request a request is

successful if all the processes have taken a local snapshot for it the requester or the

external aj agent may collect all the local snapshot of the request.

If a request is successful global snapshot of the request can thus be obtained and

recorded global state will indicate the termination of the computation.

(Refer Slide Time: 09:15)

So, formal description of this algorithm goes like this every process i maintains a logical

clock and which is denoted by x which is initialized to 0 at the start of the competition

process increments it is x by 1 each time it becomes idle. So, the basic message sent by

the process at it is logical time x is represented by B of x. A control message that requests

the processes to take the local snapshot should by your process i at a logical time x is

represented by R x of i, each process synchronizes it is logical clock s loosely with the

logical clocks x’s on the other processes in such a way that it is the maximum of the

clock values ever received or sent in the message.

A process also maintains a variable cases that when process is idle to x k pair is

maximum of the values xk on all the messages that is R x k ever received or sent by the

logical time is compared as follows x comma k is greater than x prime comma k prime if

and only x is greater than x prime or x is equal to x prime and k is greater than k prime

that is if there is a tie between x and x and x bar here then the process ids are used to

break this particular tie in this comparison.

(Refer Slide Time: 10:57)

Now, the algorithm has 4 different rules they are Guarded actions which basically will be

activated any one of them at a particular time depending on the situation when these

rules are qualifying.

So, the rule 1 says that when a process i is active it will send a basic message to process j

at any time by sending be x to j on receiving this particular message the x prime process i

does it basically updates it is clock here it will send the clock value. Now if process i is

idle then on receiving this message it will become an active here in rule 2.

Rule 3 says that when process i goes idle it does 2 things it will increase or it will

increment it is clock and then it will send the message R x comma k to all other process

and also it will take the local snapshot for the request x comma k. Rule 4 says that when

this particular local snapshot taking message that is a control message is received at the

process i it does find out whether the message whether the timestamp of the incoming

message is having higher time than the process i and also process i is idle if it is then it

will update it is clock and also it will take the local snapshot for the request which is

received by R x prime and x prime.

Now, if the clock value which is basically piggy bagged or which is coming inside the

message if it is having lesser value then and i is idle then it will not do anything why

because the existing process that is i is finished or is idle or is terminated after the receipt

of message so nothing has to be done.

Now, third point here in are 4 rule says that if i is active and on receiver of this particular

message then it will not or it is not terminated then basically it will only in or it will only

update it is clock why because it is still active not terminated . So, the last process to

terminate will have the largest clock value therefore, every process will take a snapshot

for it; however, it will not take the snapshot off for any other process.

(Refer Slide Time: 14:43)

The second algorithm for termination detection is known as the weight throwing

algorithm and is given by Huang in 1989.

So, we will first understand the system model which is used in this algorithm a process

called controlling agent monitors the computation. So, if let us say that this is the

computation model and this is the controlling process. So, it should have the connection

with all other processes and this is called a controlling agent which will monitor the

computation.

A communication channel exists between each process and the controlling agent and also

between every pair of process that we have seen in this figure initially all the processes

are in idle state the weight at each process is 0 and the weight at the controlling is 1

whereas, here the weights are all 0. The computation starts when controlling agent sends

a basic message to one of the process here the non-zero weight w from between 0 and

one is assigned to each process in the active state and to each message in the transit in

the following manner.

 (Refer Slide Time: 16:05)

So, when a process sends a message it sends a part of it is weight in the message, when a

process receives a message it adds the weight received in the message to it is weight. So,

for example, if B w 1 is basically carried on the message so w will be updated as w 2

where w 1 plus w 2 was equal to w initially.

So, w was broken into 2 parts and w 2 will be retained is it is current weight and w 1 will

be sent. So, the process receiving this particular message it adds it is weight in the

message to it is own weight thus the sum of the weights on all the processes and on the

message in transit is always 1. So, if we can sum all the weights of all the processes for

all the process and weights of all the channels that is equal to 1. So, when a process

becomes passive it sends a weight to the controlling agent in the control message. So,

that is called CW and this particular weight will be sent.

Whatever to the controlling agent the controlling agent, which controlling is an x to it is

weight? So, controlling agent w will adds w plus this w 2, now if the controlling agent

concludes the termination if the weight is the controlling agent weight will become 1

then it will conclude that termination state of the algorithm.

(Refer Slide Time: 18:19)

Notations the weight on the controlling edge and the process is represented by W here B

W is the basic message which is carrying a weight and CW is the control message which

is carrying a weight from a process to the controlling agent.

(Refer Slide Time: 18:34)

So, this is the algorithm. So, the algorithm is defined in 4 different rules here Rule 1 says

that the controlling agent or an active process may send the basic message to one of the

processes, say P, by splitting it is weight W into W 1 and W 2 that I told. W 1 and W 2

they are non-zero if then assigns it is weight W is equal to W 1 and sends the basic

message with the weight assigned as the other part that is W 2 P on receipt of this

particular message the process P S DW to it is weight if the receiving process is in idle

state it will become an active.

Rule 3 says that the process switches from active state to the idle state at any time by

sending the control message see DW is equal to W to the controlling agent and making it

is way to W; that means, it will return the weight to the controlling to the controlling

agent and put and basically put it is weight as 0.

So, on received of this such messages which is shown in Rule number 3 the controlling

agent will add DW which is coming from different processes to it is weight now if after

getting the weights come from all the processes if summation of the weight is equal to 1

then the controlling agent will conclude that the computation is has terminated.

(Refer Slide Time: 20:19)

Now, the Correctness of this Algorithm let capital A be the set of all active processes,

capital B with the set of all basic messages in concept, Capital C is the set of weights on

all the control messages in the transit and Wc is the weight on the controlling agent, there

are 2 invariants I 1 and I 2 which are defined for the algorithm like this.

So, variant I 1 says that the weight of weight on the controlling agent plus, the sum of the

weights on a that is all the active processes and the weights on all the basic messages in

transit and some of all the control messages in transit is equal to 1 ; that means, entire

weight on the system is equal to 1. And second invariance is says that that for all W. So,

a union B union C and W is greater than 0.

(Refer Slide Time: 21:19)

So, in variant I 1 states that the sum of the weights at the controlling process at all the

active processes on all the basic messages and all the control message in transit is always

equal to 1 in variant to state says the weight at, each active process on each basic

message in transit and on each control messages in transit is non-zero.

Hence the weight on controlling agent is equal to 1 this will imply by the invariant 1 that

the other part that is Wc plus the sum of the weights of the union A union, B union, C

this part is equal to 0 why because this is equal to 1.

Now this will imply that A union B union C is equal to null by I 2 because all are non-

zero. So, hence now since the communication channel is empty. So, that is why A union

B is equal to 5 this implies that the computation has terminated therefore, the algorithm

never detects a false termination further A union B is equal to phi that is Wc and Wc is

equal to 1 by I 1, since the message delay is finite that is after the consideration

estimated eventually Wc will become equal to 1.

Thus the algorithm permitted in a finite amount of time meaning to say that the control

messages which carries the weights form the terminated process eventually reach to the

controlling agent and the sum of all the weights will become 1 within a finite time.

(Refer Slide Time: 23:18)

Third Algorithm the Spanning-Tree-Based Termination Detection Algorithm, now we

consider in this algorithm that there are N processes P i is which are modeled as the

nodes of a fixed connected undirected graph. The edges of the graph represents the

communication channel the algorithm use fixed the spanning tree of the graph with the

process P 0 at the root which is responsible for the termination detection process P 0

communicates with the other process to determine their states through signals.

All the leaf node reports to their parents if they have terminated and this is called inflow,

the parent node will similarly report to the parent when it has completed processing and

all of it is immediate children are terminated and so on. The root concludes that

termination has occurred if it has terminated and all of it is immediate children have been

terminated.

(Refer Slide Time: 24:23)

Now, 2 waves of the signal generated one on moving inwards moving inwards in the

sense this is a tree structure the leafs this is called leafs and when they terminated they

will send the message and this is this direction is called moving inwards and moving

outwards; that means, if the root sends the message down to the leaf then it is called

outward initially a contracting wave of signals called token moves inwards from leaf to

the root here.

Now, if this token wave reaches the root without discovering that the termination has

occurred the root initiates the second the root initiates the second outward wave of

request signals, at this repeat wave reaches the leaf and the token wave gradually forms

and starts moving inwards again this sequence of event is repeated until the termination

is detected.

(Refer Slide Time: 25:44)

Simple Algorithm which we will first understand and then we will see the problems and

we will using these problems we will see the final algorithm.

So, the simple strategy is that initially the leaf nodes are given the token. So, they are

given token let us say t 1 and t 2. Each leaf process, after termination sends it is token to

it is parent, where the parent process terminates and after it has received the token from

each of the children; it sends their token to it is parent. This way each process indicates

to exponent that the sub tree below is idle. In similar manner the tokens get propagated to

the root. So, when it gets propagated to the root the root will contain that particular token

and this concludes that the entire computation has terminated after it has become idle and

has received the token from each of it is children.

(Refer Slide Time: 26:56)

Now, the problem exists in this particular algorithm the simple algorithm fails under the

some situation when the process after it has sent a token to it is parent which indicates

that the that that particular process is idle, but again receives a message from some other

process.

So, once it has received a message from it is process then the idle state again will go to a

tournament state, but it is parent is knowing that that particular process is idle which

could cause the process to again become idle and that is shown in figure 15.1.

(Refer Slide Time: 27:36)

In 15.1 you can see this particular situation that after 1 has given it is token 2 the 2 it is

parent the goal number 5 has sent a message back to 1. So, 1 will again become from idle

it will become an active, but this parent knows that 1 is idle which is going to make the

contradiction.

(Refer Slide Time: 28:17)

So, this kind of problems is now corrected and the final algorithm is given by the Topor

in 1984. So, the main idea is to color the processes and the tokens and change the color

when the messages such as we have shown in figure 15.1 are involved the algorithm

works as follows initially each leaf is provided with the token the set S is used for the

book keeping to know which processes have the token hence S will be the set of all leads

in the tree. Initially, all processes and the token are colored white when a leaf terminates

it sends the token it holds to the parent process

A parent process will collect the token sent by each of it is children after it has received

token from all of it is children and after it has terminated the parent process since a token

to it is parent. A process turns black when it sends the message to some other process

when a process terminates it if it is color is black it sends black token to it is parent black

process turns white after it has sent a black to it is parent.

(Refer Slide Time: 29:31)

So, let us understand the entire algorithm through this particular example. Now as in the

algorithm you have seen that all the leaf nodes are given the tokens initially Token to the

leaps now when these leafs finishes their computation they will send the token to the

parent.

(Refer Slide Time: 30:11)

So, here you can see that this particular node and this particular leaf they have finished

their computation. So, they have sent their token to it is parent. So, this will become an

idle.

And the set S initially which was having 3 4 5 6 because they were having token now the

active set of processes will be the process 1 then 5 because it is having token and then 6

and Node 3 and 4 they have become idle as far as the working of the console algorithm.

(Refer Slide Time: 30:43)

Now this one has received the token from both of his children. So, it will send this

particular token to it is parent, t 1 will send it is token t 1 to the parent. So, now, the

parent will know that the underlying sub tree is terminated, that is it is idol and the set of

active states s will be now the Node 0, Node 5 which is having token and node 6 now the

algorithm will monitor them.

(Refer Slide Time: 31:12)

Meanwhile Node 5 has generated a message for the Node 1, now Node 1 from idle state

it will become an active state after receiving this particular message although this token

represents that 1 is active.

So, the node which sends this particular message that node will become black in this case

and once this particular node which is black finishes it is execution and it is idle then it

will send the black token to it is parent and become white then in that case.

(Refer Slide Time: 32:01)

So, here the Node 5 becomes white, but it has send a token that is T 5 is a black token

similarly 6 has send a s token to this parent. Now the active states are 0 and 2 here in this

case.

(Refer Slide Time: 32:23)

Now, in this black token finally, reaches to the Node 0 and Node 2 become idle now S

the activates states is only S. Now Node S will Node 0 will understand by receiving the

black token that that there is some message communication. Hence the distributor

computation is not terminated. So, by taking this black token Node 0 or a root will again

send the outward token and this outward token will propagate the token down to the leafs

and restart the entire process again.

So, in the second round if let us say that if it is if the computation is terminated without

any message exchange the root may get all white tokens back and this will be the

terminated state. If in the second round also if it receives a black token then again this

particular process iterates till it receives a white token and that is the indication that the

mess that the algorithm is terminated.

(Refer Slide Time: 34:02)

Now, the performance the best case message complexity of this algorithm is of the order

N, where N is the number of processes in the computation. Which occurs when all the

nodes sends all the computation messages in the first round worst case complexity of this

algorithm is of the order N times M. M is the number of computation messages

exchanged. So, this if only one message is exchanged then basically it will 2 times 3

times and so on. So, number of times this algorithm iterates outwards inwards it depends

upon the number of messages.

(Refer Slide Time: 34:45)

Conclusion determining if the distributed computation has terminated is a fundamental

problem in distributed systems. The detection of termination of a distributed computation

is a nontrivial task since no process has the complete knowledge of the global state and

also the distributed system does not have common clock. So, a number of algorithms we

have seen have been developed to detect the termination of a distributed computation

why because it is going to be used in many applications these algorithms are based on

the concepts which we have seen here the representative algorithms based on these

concepts of snapshot collection weight throwing and a spanning tree.

So, in this lecture we have described a set of representative termination detection

algorithm in the upcoming lecture we will discuss about message ordering and group

communication.

