
Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture – 13
Distributed Shared Memory

(Refer Slide Time: 00:13)

Lecture 13 distributed shared memory; preface, Recap of previous lecture.

(Refer Slide Time: 00:22)

In previous lecture we have discussed the basic fundamentals of distributed deadlock

detection and different classes of algorithms such as path-pushing, edge-chasing,

diffusion computation, and global state detection to basically see the distributed deadlock

in distributed systems. Content of this lecture: In this lecture, we will discuss about the

concept of distributed shared memory as well as provide different ways to classify

distributed shared memories and consistency models of distributed shared memory and

also discuss Lamport’s Bakery algorithm for shared memory mutual exclusion.

(Refer Slide Time: 01:06)

Introduction: Distributed shared memory is an abstraction provided to the programmer of

a distributed system. It gives impression of a single monolithic memory, as in the

traditional von Neumann architecture. Programmers access the data across the network

using only read and write primitives, and they would as they would do it in uniprocessor

system. Programmers do not have to deal with send and receive communication

primitives and also ensuring the complexity of dealing explicitly with synchronization

and consistency in the message passing model. So, all the intricacies will be bypassed, if

the programmers are given a high level abstraction which is called a distributed shared

memory.

(Refer Slide Time: 02:01)

So, distributed shared memory abstractions. They communicate they provide the

abstraction to the programmers so that they can communicate using read and write

operations in the shared virtual space. No send and receive primitives to be used by the

application, under the covers, send and receive used by the distributed shared memory

manager, here locking is too restrictive and also need the concurrent access. So, with the

replica management, problem of consistency arises. So, weaker consistency model that

weaker than von Neumann architecture is required in this particular scenario.

Let us understand this particular picture to understand the place or the placement of a

distributed shared memory in the system architecture. Now, we see that in this particular

figure, we have seen that every process or every processor has its memory within it. So,

out of this particular memory which is available with the processor in the system, some

part of the memory is basically assigned for the distribute shared memory and remaining

will be used as the local memory. This particular memory which is now spared by the

different processors will be managed by a module which is called a memory manager.

And this particular memory manager will give a complete one view of a monolithic

memory, that is called a shared memory and that is realized using memory manager in

the system.

So, that was an architecture, so here the placement of the shared virtual memory you can

see is lying over here in the distributed shared memory and this memory manager and

now basically the processes of the application. They communicate with the memory

manager through two different constructs one is called invocation, the other is called

response.

(Refer Slide Time: 04:38)

So, invocation and response are basically the primitive to access the memory as if it is

there in the von Neumann architecture.

The advantage of distributed shared memory: It shields the programmer from doing the

send receive primitives; that means, the programmers have to only use the read and write

primitive. Regarding realization of read and write primitives on the distributed system

that is the send and receive will be completely abstracted. Single there will be a single

address space and it simplifies the passing by reference and passing complex data

structure. So, once a single address space is available, the programming becomes easier

and the constructs like passing by reference and passing complex data structure will

become a convenient for the programmer to use the distributed shared memory.

It exploits the locality-of-reference when a block is moved. Distributed shared memory

uses simpler software interfaces, and cheaper off-the-shelf hardware hence cheaper than

dedicated multiprocessor systems are realized. No memory access bottleneck, here as no

single bus large virtual memory space is available. Distributed shared memory programs

are portable as they use the common distributed shared memory programming interface.

(Refer Slide Time: 06:04)

The disadvantages of distributed shared memory: here programmer need to understand

the different consistency models, to write the correct programs.

Distributed shared memory implementations use asynchronous message-passing, and

hence cannot be more efficient than the message-passing implementations. By yielding

control to the distributed shared memory manager, software programmers cannot use

their own message-passing solutions. So, it is an abstraction and the programmer has to

work in that APIs are at interfaces which is being provided by the distributed shared

memory.

(Refer Slide Time: 06:46)

Issues in implementing distributed shared memory software. So, there are several issues

in implementation and we will be touching upon in more details in this slides.

So, some of the issues which are listed over here as semantics for concurrent access must

be clearly specified, semantics of replication, location for the replication, for

optimization and the it will it should reduce the delays, and number of messages to

implement the constructs. Similarly the data is replicated or cached, this particular aspect

is a decision aspect in the design part remote access by the hardware or a software, this

also is a design aspect and this will be a major issue caching oblique replication whether

it is controlled by the hardware or software, is also a design issue and this will be dealt

for different applications. Distributed shared memory controlled by the memory

management software, operating system, and language compilers.

(Refer Slide Time: 08:04)

Now, this particular chart or a table matrix this will give a comparison of early

distributed shared memory systems. Now the type of shared memory systems you have

seen in the or we are seeing that in this matrix, that there is a single bus multiprocessor

and multiprocessors and paged base shared memory, shared memory, shared variable, a

distributed shared memory, shared object, distributed shared memory. So, these are a

different type of distributed systems and they use a different kind of caching methods.

Some are using the hardware and the some are using the software and remote access also

some are doing by hardware the others are realizing using software.

(Refer Slide Time: 08:58)

So, all these comparison will show that distributed shared memory requires a lot of

system level intricacies and depends upon different applications, how efficiently they are

going to exploit hardware versus software, replication versus a caching. So, these are the

major issues which we are going to see and different consistency models. So, that

distributed memory will be realized as single monolithic memory at the time of access

using read and write. How that is all done we are now going to see the memory

consistency model, because this model is now given to the programmer, and programmer

will see this particular model and write a programs.

These models how they are implemented we will see in this particular discussion.

Memory consistency model.

(Refer Slide Time: 09:58)

Memory coherence; memory coherence is the ability of the system to execute memory

operations correctly. Assume n processes and s i the memory operation per process P i.

So, also assume that all the operations issued by the process are executed sequentially

and pipelining is disallowed. So if we see this particular figure 13, it shows the

sequential invocation and responses in a distributed shared memory. So, in this particular

model, one thing we have to understand is that; there is the interaction between the

process and the local memory manager, the placement we have shown you in the

previous slide.

Now, the process will through the operations, it will do the invocation for the shared

memory used and this particular invocation in turn will make a call to the local memory

manager. Local memory manager will basically handle these invocations, through the

internal details of that we are going to see and provide the response to the operation. So,

rest of the internal intricacies are hidden from the programmer or is being abstracted only

in the form of invocation and response. So, these particular every invocation will lead to

a different memory operations.

Now, you see that there are so many number of operation, simultaneously at the same

point of time are issued on the distributed systems. So, basically each processor will have

its own memory operation. So, many memory operations will be overlapping or a non-

overlapping and so many number of permutations are possible which one is basically the

correct one or a and which one is not allowed or a not correct. So, it depends upon

different memory models that we are going to see. And this memory model is basically

useful to the programmer to design the correct application or programs.

(Refer Slide Time: 12:09)

So, now we are going to see the memory coherence. Observe that there are total numbers

of so many possible interleavings. So, s i is basically the memory operations so many

possible permutations are there. So, memory coherence model defines which

interleavings are permitted. So, as you see that not all permutations or not all

interleavings are allowed in the system. So, some are basically allowed, so the

interleavings which are permitted only they will be captured by the model. So, memory

coherence model will define those interleavings which are permitted.

Traditionally, read returns the value which is written by the most recent write. So, most

recent write is ambiguous with the replica and the concurrent accesses. So, distributed

shared memory, consistency model is a contract between the distributed shared memory

system and the application programmer.

(Refer Slide Time: 13:09)

So, different consistency models are used by different scientists that we can list out here.

Different consistency models are listed as a sequential consistency model by Lamport,

linearizability model by again Lamport, a PRAM model and linearizability, slow

memory, weak consistency, a release consistency, sequential consistency and so on

casual consistency model. These models consistency models are important, why because,

they give as an abstract to the programmer and programmer will use this model for.

(Refer Slide Time: 13:48)

So, let us go in more detail of these consistency models, because they are the most

important features of the distributed shared memory. The first model is called strict

consistency, it is also called a linearizability, it is also called as atomic consistency. So,

strict consistency model says that any read to a location is required to return the value

written by the most recent write to that location as per the global time reference. So,

basically here there are two important thing is that, whenever a read is issued it has to be

dependent on the most recent write, second issue; we have to see that this particular

dependency has to be linked in the global time scale or a global time frame.

So, all the operations appear to be executed atomically and sequentially. All the a

processors see the same ordering of the events, which is equivalent to a global-time

occurrence of non-overlapping events. So, here in this strict consistency, the association

of the read to the most recent right and also the global time reference is going to be very

very important notions.

(Refer Slide Time: 15:43)

Now, conditions of linearizability. More formally, a sequence of invocation and response

is linearizable, if there is a permutation sequence of adjacent pairs of corresponding

invocation and response even satisfying. First condition for every variable v, the

projection of sequence prime on v, denotes sequence prime v, is such that every read

returns the most recent write that immediately preceded it. So, this condition we have

seen that the read has to be preceded with the most recent write on a global scale or in a

global reference. Second part is says that, if the response of operation 1 occurred before

the invocation of operation 2 in the sequence, then operation 1 occurs before operation 2

in the sequence prime; that means, in the globally scale.

So, if the operation 1 happened before operation 2. So, in the global scale it should

reflect this happen before deletion and this is the condition number 2 and this has to be in

a reference to the global time frame. So, condition 1 is specifies that every processor sees

a common order of sequence prime of events that and that or and that in this order the

semantics is that read returns the most recent in completed write value. Condition 2

specifies that the common order must satisfy the global time order of events that is the

order of non overlapping operations in the sequence must be preserved.

(Refer Slide Time: 17:30)

Strict sequence strict consistency or linearizability: example we can see over here is that,

and in this particular figure the execution is not linearizable because the read by P 2 here

gives the value 0; although the most recent write of x is 4, although it is taking that

particular value not the most recent, but the old value where x was 0 in that case so P 2;

So, here we can see that the P 2 issues the write P 2 begins after the write x, 4, so this

particular read happens after the write. And so basically this read is not as shared with

the most recent right.

Hence, this is not linearizable. This example shows that it is not linearizable; however, it

is sequentially consistent. What is sequentially consistent? We will explain in a minute;

in a next slide. Hence, the permutation this permutation or the ordering that is in

sequence prime satisfying condition 2 above on the global time order does not exist. So,

out of two condition; condition number 1 and 2 defined earlier, the it violates condition

number 2 hence it is not linear is not linearizable.

(Refer Slide Time: 19:02)

So, this particular example in figure 13.5 the execution is linearizable. So obviously, we

can see over here that this particular read of x is drawn out of the most recent write. So,

here the value 4 is written and the read is also basically able to fetch the same value or

that value is basically now available whatever recent write has done similarly for y. So, y

in most recent y has written nearly two and that is available to the read which is

following the right. So, the this particular both are read operations so, hence it is

linearizable.

And, it is also sequentially consistent. So, here it is written that it is consistent with the

real time occurrence and that is write y 2 and write x 4, read x 4 and read y 2 is basically

the sequence, and that is why it is linearizable? And this sequence is following the global

timeframe or the real time occurrence. Hence this permutation sequence time satisfies the

condition 1 and condition 2; hence it is very strictly consistent and linearizable.

(Refer Slide Time: 20:31)

The implementation of linearizability we can see here, requires two aspects to be taken

into an account. The first aspect which we have seen is how to associate the read with the

most decent write, the second one is how to evolve a global time reference. Although,

there is no global clock which and in the distributed system and also there is no common

memory. So, in spite of these two absence, we have to provide the global time frame

reference to all the events which is occurring. Linearizability is implementation is a

challenge.

So, let us see how the linearizability is implemented. So, as I mentioned simulating

global time axis is expensive. Assume full replication is available, and a total order

broadcast support is also available. Total order broadcast will be used here in

implementation of linearizability. Now, here when the memory manager receives the

read and write from the applications, it will issue a total order broadcast the read or write

request to all the processes processors. So, it will await its own request that was

broadcast perform the pending response as follows; when if the case is read, then it will

return the value from the local replica; if it is write then it will write to the local replica

and return acknowledgment to the application.

Now, when the memory manager receives the total order broadcast, that is; write x value

from the network. Then it will write the value to the local replica x. Then the memory

manager receives a total order broadcast from read x value from the network they will

not do any response. So, here you can see that either it is read or write in both the

operations, it will issue a total order broadcast why it is issue a total order broadcast is to

evolve a global time reference implementation.

(Refer Slide Time: 22:47)

So, for read operation, whenever a memory manager system wide receives a total order

broadcast, they do not perform any action that we have seen in the algorithm. Then why

is the broadcast necessary? The reason is this. If the read operations do not participate in

total order broadcast, they do not get totally ordered with respect to the write operation

as well as with respect to the other read operations. Hence, the read is to be associated

with the most recent write is realized, because of this total order broadcast of read as well

as write operations.

(Refer Slide Time: 23:24)

The example you can see over here in this particular figure is that, when I write issues a

total order broadcast this message will reach P k earlier than P j. So, if it reaches P k

earlier and then a read is issued to read this variable x which is written by the most recent

write. So, that value is available whatever is recently written value for x.

However; for P j the read is happening before, because the total order broadcast is

receiving at a later point of time. Hence, it is going to read the old value although, this is

happening after this read even then it is able to only view the old values, because new

value is not available hence it is a violation of linearizability. So, that is why the read

operation have to basically participate in total order broadcast that I explained you.

(Refer Slide Time: 24:36)

The next consistency model is called sequential consistency. Sequential consistency is

specified as follows: The result of any execution is the same as if all operations of the

processors who are executed in some sequential order. The operations of each individual

processor appear in this sequence in the local program order. So, any interleaving of the

operations from different processor is possible. But all processors must see the same

interleaving. Even if the two operations from different processors do not overlap in a

global timescale, they may appear in a reverse order in a common sequential order seen

by all the processors.

So, here one thing we have to understand, that sequential consistency model is going to

evolve a sequence or a some other sequence and that sequence should be visible to all the

processors.

(Refer Slide Time: 25:43)

So that order we are going to see how we are going to evolve in sequential consistency.

So, here implementation of a sequential consistency model which is a weaker than the

linearizable model or a strict consistency model it is weaker model. So, it only here you

can see that only write participate in a total order broadcast. And reads do not because:

all consecutive operations by the same processors are ordered in the same order, the read

operations by different processors are independent of each other; and to be ordered only

with respect to the write operations.

(Refer Slide Time: 26:30)

Direct simplification of linearizability algorithm is we are going to show you. So,

sequential consistency using local reads. So, here when a memory manager P i receives

read or write from the application in sequential consistency model we see that, what it

will do? It will form the two cases read and write; if read then it will return the local

replica. And for the write operation, if it want to write the value to the variable x, then it

will issue a total order broadcast to all the processor including itself. When this memory

manager at P i receives the total order broadcast from j from the network, then it will

write the value to the local replica. And if it is the same process then it will send the

acknowledgment to the application.

So, here we see that only the write will issue the total order broadcast and read basically

is not required by, because it is a weaker model than strict consistency model we have

seen all linearizability model. So, this algorithm issues the locally issued writes get

acknowledgment locally read are delayed until the locally proceeding writes have been

acknowledged or locally issued writes are pipeline.

(Refer Slide Time: 28:05)

So, this is an improvement using local writes. Now, the next consistency model for

distributed shared memory is called casual consistency. Causal consistency is also a

weaker model compared to the sequential consistency model.

In sequential consistency all write operation should be seen in a common order that we

have seen that after issue the write, then a total broadcast message is performed total

order after the write operations. So, all the write operation should be seen in a common

order in the sequential consistency. Now for causal consistency only causally related

write should be seen in a common order. So, causal relation for a shared memory system:

At a processor, local order of events is the causal order and write usually precedes read

issued by another process if the read returns the value written by the write. The transitive

closure of the above to order is causal order. Total order broadcast for the consistency

sequential can also provide the causal order in the shared memory.

(Refer Slide Time: 29:21)

So, here we can see that, in this example the execution is sequentially consistent, hence it

is causally consistent, why? Because casually consistency is a weaker than the sequential

consistency. Here in this example you see both P 3 and P 4 see the operations at the P 1

and P 2 in a sequential order, hence in the casual order. So, that P 3 and P 4 the

operations are basically the read operations of value x; here by P 3 so x value is written

two which is available over here, similarly this x is writing 7 and this particular order is

followed, why? Because, they are they are sequential order as well as causally related

order.

Similarly, x 4 and x 7 so x 4 here x 4 it is there and x 7 is there. So, they are causally

related as well as and so it is sequential consistency as well as; causal consistency model

which is being taken in this example.

(Refer Slide Time: 30:44)

So, this example shows that the execution is not sequentially consistent, but causally

consistent; that means, causally consistent is a weaker model this particular example will

show, and whereas, the sequential consistency is not followed. So, here we can see that

both P 3 and P 4 see the operations at P 1 and P 2 in a casual order, because the lack of

causality relation between writes by P 1 and P 2 allows the values written by the two

processors to be seen in different order of the system.

The execution is not sequentially consistent because there is no globally satisfying

contrary contradictory ordering requirement by reads and write. So, here you can see that

that the causal ordering is achieved, in the sense that if we see the read operations of P 3

and read operations of P 4. So, here the first read is able to read 7 and the second read is

able to read the value 2. So, they are different processors as you see. So, as far as casual

dependency is concerned they are satisfying as far as x 4 x is concerned it is getting 4

and then 7. So, causal consistency is allowed, but sequential consistency is not there,

why? Because, here you can see that a first 7 is read and then 2 is read and here 4 is

basically read and then 7 is read.

So, the ordering of ordering is cannot be organized as per the sequential consistency.

Hence, it is a casual consistency, but not a sequential consistency.

(Refer Slide Time: 32:42)

So, this example shows that it is not even a casual consistency. So, you will see a weaker

model than causal consistency which is called a PRAM model; where that PRAM

consistency will be there, but not causally consistent. So, casually consistent, why it is

not there? So, you can see that x is basically 2 and then here x is basically read as 7. Now

here x is read at 7 and x is then read at 7. So, this causal relation is violated here in this

particular order.

So, 4 is proceeding 7, because it is happening with this particular relation is violated

here. Hence, this is not causally consistent, but we will see another weaker model where

it is PRAM consistent.

(Refer Slide Time: 33:43)

So, PRAM full form is called pipelined ram model or a processor consistency model, it is

also called as a pc that is the processor consistency. That is the consistency at local level.

So, only the write operation issued by the same processor are seen by the others in the

order they were issued, that writes from different processors may be seen by the other

processors in different order.

So, here the ordering by ordering of writes by the same processor is there unlike in

casual ordering where the ordering of writes between different processors are also, if

they are casually related there that also is a glaze and force. So, here processor

consistency or a pipeline ram or a PRAM consistency model is a weaker form of a causal

consistency model. Now this PRAM can be implemented using a FIFO broadcast.

(Refer Slide Time: 34:45)

Another consistency model is slow memory. So, only write operation issued by the same

processor and to the same memory location must be seen by the others in that order.

Slow memory, but not the PRAM so; obviously, we see that there is another weaker

model that is called a slow memory model.

(Refer Slide Time: 35:02)

Now, after seeing so many number of consistency models starting from very strict

consistency model, that is called the linearizability model or a strict consistency model.

Then we have seen that a weakening of this model, we realized a another sequential

consistency model. And further weakening it we have obtained a causal consistency

model weakening; further casual consistency we have obtained PRAM model pipelined

ram model, weakening this pram model also we have received a slow memory model and

we are slow memory there is no consistency model is also there; that means, consistency

model is not assumed. So, this particular weakening will enforce a strict hierarchy of the

memory consistency models which is shown here in this picture.

(Refer Slide Time: 36:04)

Synchronization based consistency model. So here we are not going to see the

synchronization based consistency model. The first one is called weak consistency. So,

consistency conditions apply only to the special synchronization instructions and for

example, barrier synchronization. Non-sync statement will be executed in any order by

various processors. Example, weak consistency, release consistency, entry consistency.

So, weak consistency all the writes are propagated to the other processes, and all writes

done elsewhere are brought locally, at the sync instruction. Accesses to the sync variables

are sequentially consistent. Access to the sync variables is not permitted until all writes

elsewhere have completed. No data access is allowed until all previous synchronization

variables. Accesses have been performed.

Drawback: cannot tell whether the beginning access to the shared variable enter critical

section, or finished access to the shared variable that is exit critical section.

(Refer Slide Time: 37:08)

Two types of synchronization variables: acquire and release. Release consistency acquire

indicates CS is to be entered. Hence all writes from the other process should be locally

reflected at this instruction. Release indicates access to the critical section is being

completed. Acquire and release can be defined on a subset of the variables. Lazy release

consistency propagates the updates on-demand, and not in PRAM way.

So, entry consistency each ordinary shared variable is associated with a synchronization

variable lock or barrier.

(Refer Slide Time: 37:56)

Now, we are going to see a shared memory mutual exclusion algorithm which is given

by the Leslie Lamport and it is also called the Bakery algorithm. So, Lamport proposed

the classical bakery algorithm for n-process mutual exclusion in the shared memory

system. The algorithm is so called because it mimics the action that the customers follow

in a bakery store. A process wanting to enter critical section picks a token number that is

one greater than the elements in the array choosing from 1 to n.

So, processors processes enters the critical section in the increasing order of the token

numbers. In case of concurrent accesses to choosing by multiple processes, the processes

may have the same token number obtained. In this case, a unique lexicographic order is

defined on a tuple token and pid, and this will give a total order and this dictates the

order in which the processes are entering the critical section, the algorithm for process i

is given in the next slide. The algorithm can be shown to satisfy three requirements of the

critical section problem the first is mutual exclusion, bounded waiting and progress.

(Refer Slide Time: 39:07)

This is the bakery algorithm Lamports and process Bakery algorithm for shared memory

mutual exclusion. So, here we can see that this introduces the timestamp or this ordering.

So, mutual exclusion the role of line 1 e wait for others timestamp choice to stabilize and

the use of timestamp is to order them according to the priority.

(Refer Slide Time: 39:30)

So, highest priority will be allowed to go into a critical section and this will ensure the

mutual exclusion. Bounded waiting means P i can be overtaken by the other process at

most once the progress means lexicographic order is the total order process with the

lowest timestamps will enter the critical section that becomes the high priority.

So, a space complexity here the lower bound of n registers time complexities of the order

n time of Bakery algorithm Lamports fast Mutex algorithm takes of the order one in the

absence of the contention; however, it compromises unbounded waiting it uses write read

write write a write and a read. So, write of x followed by read of y, then write of y

followed by read of x, this sequence necessary and sufficient condition to check for the

contention and safe safely enter the critical section

(Refer Slide Time: 40:41)

There are few other algorithms in this particular problem. The another algorithm as I as I

mentioned that is called fast mutual exclusion algorithm, the two process mutual

exclusion, modified mutual exclusion algorithm for to process, concept for wait freedom.

(Refer Slide Time: 40:58)

Conclusion; Distributed shared memory is an abstraction whereby distributed programs

can communicate with the memory operations that is through read and write as opposed

to using message-passing intricacies. So, in this lecture we have discussed the concept of

distributed shared memory and we have also seen several consistency model like

linearizability, see the sequential consistency, casual consistency, pipeline ram, and slow

memory. We have also discussed the fundamental problem of shared memory mutual

exclusion with the help of the Lamport’s Bakery algorithm. In the upcoming lecture, we

will discuss about distributed minimum spanning tree.

Thank you

