
Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture - 01
Introduction to Distributed Systems

So this is the first lecture Introduction to the Distributed Systems.

(Refer Slide Time: 00:21)

In this particular distributed system lecture introduction, we are going to discuss about

the different requirements of a distributed computing systems and we are going to

discuss, what are the different topics we are going to cover the textbooks and so on so

forth.

So, before that let us begin with the preface. So, the explosive growth of distributed

computing systems makes understanding imperative yet difficult because of uncertainties

introduced by the asynchrony, limited local knowledge, and partial failures. The nature

solves it perfectly, such as flock of birds where these birds are the while agents they

communicates with each other to achieve a common goal.

However, in the field of distributed computing providing all these intricacies, that is

asynchrony, limited local knowledge, partial failures. To understand this course will

provide a theoretical underpinning for design and analysis of many distributed systems,

such as and the concepts such as communication, coordination, synchronization and

uncertainty to the lower bounds techniques. These together will be discussed in the part

of the course. And this particular course will be quite useful as far as the different

applications are concerned.

The course structure of a distributed system goes like this.

(Refer Slide Time: 02:00)

So, this particular course if you see is divided into two different parts. The first part is the

perspective from the systems perspective distributed systems. The second part is called

distributed systems from algorithms perspective. So, the algorithms which will run on

this model of a distributed systems is required to be understood here. So, model also is

required to be understood. And then the algorithms: how to design these algorithms, how

to analyze it and different intricacies of this algorithm design in this particular problem

setting.

So, the main topics which we are going to focus on from algorithms perspective means

how to build the spanning trees using flooding algorithms, then the leader election

algorithm. These are basically most of the important algorithmic design techniques they

are the basic building blocks of the distributed systems. From systems perspective we are

going to cover up the global state recording, mutual exclusion, consensus, shared

memory, check pointing rollback, distributed hash table. And the case studies of a

distributed systems which we will cover here in this part of the course structure is peer to

peer Google file system HDFS and introduction to the spark.

(Refer Slide Time: 03:19)

With this particular course we will use two textbooks. The first we will deal about the

systems perspective, the first one mentioned here as the authors Kshemkalyani and

Singhal. The other textbooks will deal with the algorithms perspective and that is by

Jennifer Welch. We have the reference book also that is distributed algorithms by Nancy

Lynch.

(Refer Slide Time: 03:47)

Let us begin with the definition of a distributed system. Distributed system is a collection

of independent entities that cooperate to solve a problem that cannot be solved

individually. So, basically it is nothing but a collection of computers. Thus, this

particular collection do not share a common memory or do not have a common physical

clock, and the only way they can communicate is through the message passing and for

that they require a communication network.

The computers used here in distributed systems are semi-autonomous and they are

loosely coupled while they cooperate to address the problem collectively.

(Refer Slide Time: 04:33)

So, before we understand in more detail about the distributor system, let us have some

properties of distributed system to keep in a mind at this point of time. So, heterogeneity

is one of the properties, because here the system comprises of different computers

autonomous computers and they may be heterogeneous having heterogeneous hardware

and software components.

The concurrency is another property of a distributed system, shared data is also another

property of a distributed system. So, no global clock is also one of the important

properties and inter dependencies are there they depend interdependent components

depend on each other.

(Refer Slide Time: 05:17)

Now, to understand the distributed system from the system perspective, let us see this

particular figure or diagram. In this particular diagram, you can see the computers are

autonomous computers you are presented as processor memory with the operating

system and basically the communication protocol stack.

And, this particular these different computers they can communicate through the network

that is the communication network. Now, as far as the software is concerned which will

build a distributed system this particular software is called basically the middleware and

the part of these middleware is basically the software which runs on each computer they

are called software’s; they are written as the software components.

So, basically this particular distributed system software will basically use the existing

computers their operating system and underlying computer network and they run the part

of the middleware and together this will form a distributed system. So, middleware will

bind the distributed system.

(Refer Slide Time: 06:25)

So, again further explain the distributed system connects autonomous processors by

communication network. And the software component that run on each of the computers

use the local operating system and network protocol stack. The distributed software is

termed as middleware.

The distributed execution is the execution of the processes across the distributed system

to collectively achieve a common goal. The execution is also sometimes termed as the

computation or error in a distributed system.

(Refer Slide Time: 06:57)

Furthermore; the distributed software which is also called a middleware is designed in a

layered architecture to simplify the complexity of the distributed software. And this

particular middleware or the distributed software that drives the distributed system, it

also provides the concurrency of heterogeneity at the platform level.

So, in the diagram you can see the distributed application mentioned over here. So, this

particular distributed application will use the distributed software which is a middleware;

middleware runs on the operating system of each collection of computers and also it will

use the underlying network protocol stack for the communication. And there are several

standards also evolved over a time for this particular middleware application;

middleware for the distributed software development. That is OMG, CORBA, RPC,

DCOM, RMI, MPI, and so on.

(Refer Slide Time: 08:02)

So, that was the overview of the distributed system from a system perspective. Now, we

are going to touch upon the motivation of the distributed system. So, inherently

distributed computation that is many applications such as money transfer in the banking,

or reaching a consensus among the parties that are geographically distant, the

computation is inherently distributed. So, for that the model that is distributed system is

required for that computation that is the applications which are inherently distributed.

Then, next is the motivation called resource sharing the sharing of the resources such as

peripherals, and a complete data set and so on and so forth; is a basically the motivation

behind this building of distributor system. Another motivation is to access the

geographically remote data and resources, such as bank database, supercomputer and so

on. Reliability: enhanced reliability possibility of replicating the resources and execution

to enhance the reliability. Geographically distributed resources are not likely to crash at

the same time. That is the motivation of building the distributed system for that.

(Refer Slide Time: 09:19)

So, reliability entails several aspects in that case. So, these are basically the availability

the resources should be accessible at all the times. Integrity the value or oblique the state

of the resource should be correct, in the face of concurrent access, and fault-tolerance the

ability to recover from system failures. Increased performance oblique cost ratio by

accessing geographically remote data and resource sharing. So, these are basically the

reliability will entail these aspects.

(Refer Slide Time: 10:02)

So, basically other advantage of distributed system is scalability, adding more processor

to the communication network does not pose a bottleneck to the communication network.

Then, the next advantage is modularity and incremental expandability. So, here the

process or heterogeneous processor can be added without any bottleneck problems.

(Refer Slide Time: 10:18)

Now, we are going to discuss the design issues and challenges in the distributed system

design.

So, from system perspective of a distributed system design, we are going to see; what are

the intricacies and we have to understand the theoretical basis for this design. Another

thing is algorithmic perspective of it is distributed system design. The next design issues

and challenges is based on the recent technology advances and also driven by the new

applications and which will basically be the motivation or be the design issues. And also

becoming a challenges in evolving the distributed systems.

So firstly, we are going to look upon the design challenges from system perspective of

distributed systems.

(Refer Slide Time: 11:14)

Here, the components which are involved here in the systems perspective are the

communications that is the communication network where the processors can basically

communicate with each other through which processors can communicate. Processes

some of the issues involved are: the management of the processes and the threads at the

client server; code migration, design of software mobile agents. Synchronization is the

most important part.

Synchronization or the coordination among the processes are essential. Mutual exclusion

is an example of synchronization, but many other forms of synchronization, such as

leader election, physical clocks, logical clocks global state recording algorithms, all

require different form of synchronization that we are going to cover up in this part of the

course in more details.

(Refer Slide Time: 11:59)

Now, another system level challenge is the fault tolerance.

So, this fault tolerance it requires maintaining correctness in spite of the failures of a

links, nodes and processes. So, this particular fault tolerance is basically achieved using

the process resilience, reliable communication, distributed commit, check pointing and

recovery, agreement and consensus, failure detection, self-stabilization these are some of

the techniques which we are going to cover up, when we discuss the design from systems

perspective.

(Refer Slide Time: 12:38)

Another system perspective design angle or aspect is transparency. So, transparency is to

hide the implementation policies from the user and this can be a different kind of

transparencies: the first one is called access transparency. When it hides the difference

says in the data representation on different systems and location transparency when it

makes the transparency of the location of the resources.

(Refer Slide Time: 13:13)

And migration transparency allows the relocating resources without changing the name.

Relocation transparency the ability to relocate the resources as they are being accessed is

relocation transparency. Replication transmit does not let the user become aware of any

replication.

Concurrency transmits deal with masking the concurrent use of shared resources for the

user. Failure transparency refers to the system being reliable and fault-tolerant. It is not

known to the user at this at any point of time.

(Refer Slide Time: 13:38)

Now, that was the distributed system from system perspective. Now, we are going to

touch upon another important component of this particular distributed system distributed

computing system that is called distributed algorithms.

So, the algorithms are to be evolved. So, we are going to cover up the fundamental

algorithms which will be the building basic building blocks of developing the distributed

applications. So, in distributed applications, distributed systems, different complexity

measures are of interest such as: the time and space. They were used in the classical or

the sequential algorithms as well, but now communication is also evolved. So,

communication cost is one of the complexity measure.

So, communication cost includes the number of messages, size of the message and

number of share variables. And also another component which will be used in the

complexity is called basically the number of faulty versus non-faulty components. Now

because of the complications faced by distributed system they lead to the increase the

scope of negative results, lower bounds and impossibility results.

So, all these things will be covered up in a form of a in the distributed algorithm design

and thus we will discuss more these particular distributed algorithms in the details. So,

the fundamental issues in the design of distributed algorithms are the following three

factors.

(Refer Slide Time: 15:22)

The asynchrony: so asynchrony, limited knowledge and failures. There are three different

important fundamental design issues in the algorithm distribute algorithm. Asynchrony is

basically absolute and relative timing of the events cannot be known precisely.

So, in this particular setting how the algorithms are to be evolved develop. Local view

that is the computing entities can only be aware of the information it acquires, so it has

only the local view of a global situation. Third one is the failures. So, the computing

entities can fail independently, leaving some components operational while others are

not. So, these three different factors they add the more complications in design of the

distribute algorithm and becomes a challenging to evolve the distribute algorithm in

these particular problem setting, that is asynchrony that is we are not knowing the events

when it they are going to occur. Local view we are not knowing the complete picture of

the global situation yet we have to come up with an algorithm. Failures means the

components which are basically involved in that distributed system they can fail

independently, and basically this expected that the applications should basically keep on

running in spite of failures.

(Refer Slide Time: 16:55)

So, distributed computing systems are studied since 1967, starting with Dijkstra and

Lamport. Dijkstra in 1972 got Turing award for the works on the distributed algorithms

and distributed systems. Leslie Lamport very recently has got the Turing award for his

work on basically the distributed algorithms and systems.

(Refer Slide Time: 17:13)

Special mention to the Leslie Lamport, because most of the works whatever he has done

we are going to cover up as far as distributed systems fundamentals are concerned.

So, Leslie Lamport devised important algorithms develop formal model verification

protocols to improve the quality of real distributed systems. Fundamental contribution to

the theory and practice, notably the inventions of the concepts such as causality look

logical clock, safety and liveness, replicated state machines, sequential consistency or

some of them. So, Lamport was the winner of 2013 that is Turing award for distributed

computing.

(Refer Slide Time: 17:56)

Now, algorithmic challenges in the distributed system, we are going to touch upon that is

previously we have seen the design challenges from system perspective. Now we have to

see the algorithmic challenges in the developing the distributed system designing the

distributed systems. So, time and globally state in a distributed systems. So, first of all

this is the important challenge let us see what this is the processes in the system are

spread across three-dimensional physical space. Another dimension, is the time, has to be

superimposed uniformly across a space.

The challenges pertain to providing accurate physical time, because there is no common

clock and to provide a variant of a time, that is called a logical time. So, logical time is

the relative time and eliminates the overhead of providing the physical time for the

different applications. And basically the logical time basically can capture the logic and

the inter-process dependencies within the distributed program, and also track the relative

progress at each process.

So, instead of physical having a common physical clock are basically implementation of

a common physical clock here we are going to see the how the logical clock and solve

without having the physical clock these particular problems.

(Refer Slide Time: 19:19)

The other problem other algorithmic challenge is the synchronization coordination

mechanisms. So, the processes must be allowed to execute concurrently, except when

they need to synchronize to exchange the information, that is, communicate about the

shared data; so synchronization essential for the distributed processes to overcome the

limited observation of the system state. The following mechanisms are used for the

synchronization and the coordination. First of all leader election: deals with the

asymmetry of a process. And then mutual exclusion: access to the critical resources has

to be coordinated through that is done through mutual exclusion.

Then termination detection, that is, cooperation among the processes they will basically

able to detect the required state the required global state that is called termination state

and that is called termination detection in a distributed system. The next important; that

means, thing is called garbage collection detecting the garbage requires another the

coordination. So, these are basically the synchronization and coordination mechanisms

which will basically be the used up in designing the distributed applications.

(Refer Slide Time: 20:46)

Another thing is another important notion is the reliable and the fault-tolerant distributed

system. So, reliable and fault-tolerant environment has multiple requirement aspect, and

these can be address by the various strategies which we are going to cover up in this part

of the course.

The first one is called consensus algorithm, second is the replication and the replica

management, voting and quorum systems, distributed databases and distributed commit,

self-stabilization system and check-pointing and recovery algorithm, and failure

detectors. So, these together; these strategies will be able to provide the fault-tolerance,

that is, if the component like nodes, links are failing yet how the distributed application

can basically work on without any disruptions and that is the main requirement of the

distributed motivation of a distributed system to have a reliable in a distributed system.

So, basically if the processors or the algorithms which are required are consensus

algorithm because in the failures. So, the remaining non-faulty processes they have to

basically come up with their consensus on the values and the applications are continuing

to run. Another thing is called replica and replica management, because they replicas of

that data is available, then the application can run without the problem of failures.

Then voting and a quorum is also a important criteria for example, when the; when some

of the systems are when some of the important system is failed, then basically the the

among the remaining they have to evolve through the voting and quorum mechanism to

basically run those applications and distributed databases and distributed commit is also

basically one of the important applications where they have to decide among discussion

with each other they have among the synchronization to see whether the commit which is

taking place has to be done or has to be aborted by taking the decisions.

Then, self-stabilization system means if the components are filling then how the system

evolves and how much time it takes to stabilize itself. So, that is self-stabilization

systems that we are going to also cover up briefly in this part of the course. Check-

pointing and recovery system are very important as far as the fault-tolerant is concerned

fault-tolerant means if there is a failure how basically the operations which are done has

to be basically with the minimal loss has to basically resume their operations. So, check-

pointing and rollback recovery algorithms we are going to cover up in this part of the

course. Then failure detectors are also very important if how do detect that that the nodes

or the links are basically not working or a or a field.

(Refer Slide Time: 23:48)

Another important algorithmic challenge is basically forming the group communication,

multicast, and ordered message delivery. So, there are some applications where the group

communication is required so, basically this paradigm is also useful for them to develop

the application.

(Refer Slide Time: 24:03)

Distributed shared memory abstraction; now the middleware is the software is the

distributed system software will basically use this particular this one abstraction called

distributed shared memory. Although, it is not having a common memory, but distributed

shared memory is realizable using the message passing systems that we are going to see.

(Refer Slide Time: 24:26)

Now, the applications of a distributed computing systems and basically the newer

challenges. Mobile systems: Mobile systems typically use the wireless communication

which is based on electromagnetic waves and utilizes a shared broadcast medium. So,

mobile system is one of the application of a distributed computing application we are we

are different elements are involved and to come up with this particular service and that is

called a mobile service and that is an application of a distributed computing. Sensor

network is another application.

Sensor is a processor with equip with an electro-mechanical interface and that is capable

of sensing physical parameters, such as temperature, velocity, pressure, humidity, and

chemical. So, this particular kind of nodes called a sensor node, if basically deployed to

basically monitor the cyber physical will make a cyber physical system to monitor any

physical activity or event for example, to monitor the whether it is having a volcanic

eruption or any other situation.

So, it is having a lot of use in cyber physical system and it is a kind of large scale

distributed system that we that is basically using the principles of a distributed systems.

Another application here is called ubiquitous or a pervasive computing: Ubiquitous

systems represent the class of computing where the processors embedded in seamlessly

providing through the environment perform the applications of functions in the

background. Examples are the smart environment; smart environment or smart building,

smart cities all are examples of a ubiquitous and pervasive computing.

(Refer Slide Time: 26:18)

Another application is basically called Peer-to-Peer computing: Peer-to-Peer represents

the computing over the application network we are all interactions among the processors

are at the peer levels, without any hierarchy among the processors. Thus, all processors

are equal and play a symmetrical role in the computation. So, peer-to-peer network

systems are used in providing the resources and services. The peer-to-peer networking is

now basically a very challenging as far as developing distributed applications are

concerned. Technically also it is quite difficult and, but the simpler model like client

server paradigm which is not purely a peer-to-peer it is not purely distributed, this is used

by the different applications because industry feels comfortable with client server model.

Peer-to-peer computing models for different applications are evolving a over a period of

time the recent application which is added is called bit coin and bit coin is based on peer

to peer distributed computing design. We are going to touch upon later on in this part of

the course.

(Refer Slide Time: 27:39)

Distributed data mining is another application of a distributed computing. So, distributed

data mining algorithms examine large amount of data to detect the patterns and trends in

the data, to mine or exact useful information. The traditional example is: examining the

purchasing patterns of the customer in order to profile the customers and enhance the

efficiency of the directed marketing schemes.

Another application of a distributed computing is fine in the grid computing: Analogous

to the electrical power distribution grid, it is envisaged that information and computing

grid will become a reality someday. Very simply stated, idle CPU times of the machines

connected to the network will be available to the others.

(Refer Slide Time: 28:33)

Another application is the security in the distributed. The traditional challenges of the

security in a distributed setting include: confidentiality; that means, only authorize

person can access, authentication means ensure that the source received the information

and the identity of the sending process are basically the genuine and availability is the

maintaining allowed access of service despite malicious actions.

So, security in a distributed system is used in the payment systems, the online purchasing

and also the recent bit coin, that is, the digital money how the digital money is realized

lot of security algorithms are involved in a distributed setting. So, we are going to cover

up this aspect also and basically this is important, because in the financial market this is

most of this is one of the most important factor in designing such applications in the

distributed systems.

So, in the Nutshell, what we have seen here is the distributed systems as having a wide

variety of application real world scenarios and some of them we have covered up in this

part of the introduction. And this will be the basis and of understanding or pinpointing or

underpinning the intricacies the theoretical and intricacies to understand the reasoning

how the things are being designed and evolved and also we can verify the it is

correctness, that it is correctly working and also to understand it is contribution it is

required to be familiar with the fundamental principles.

(Refer Slide Time: 30:17)

So, I told you about this. So, this lecture first categorizes the distributed systems and the

distributed algorithms by looking at various informal definitions. The design issues and

the challenges based on theoretical and the systems aspects.

In the upcoming lecture, we will try to give an insight on the detailed concept that will

give a good understanding of the further details.

Thank you.

