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Good morning and welcome to lecture 54 of our course, in the last lecture we had looked

at the subject of MIMO systems and within that a special case where we had done the

Eigen  decomposition  of  the  MIMO  channel  and  then  we  did  the  optimum  power

allocation for this channel.

(Refer Slide Time: 00:25)

So, what we would like to do in todays lecture is quickly review that material and then

build on that foundation. The Eigen decomposition is possible when we have information

about the channel at the transmitter. So, therefore, we are able to do the pre coding at the

transmitter and the post processing at the receiver.

However if that knowledge is not available at the transmitter, that is the case where you

have CSIR and that is what we would like to do in today’s lecture. We will also be in

unfolding the concept of entropy in our discussion as we have already introduced it in the

last lecture; this is the same concept that it would be that is borrowed from the chapter on



information theory so that we can understand the capacity of the channel better. We will

touch  upon the  topic  of  space  time  codes,  when  you  have  multiple  antennas  at  the

transmitter and receiver then you have the ability to apply a very special type of coding

that method is called the space time codes, and what we would like to do in this course is

to introduce the space time codes in a very brief manner, and in particular one of the

techniques called the blast  technique which was the first demonstration of very large

capacities in a MIMO channel.

The next chapter that we will be touching upon not in todays lecture, but something for

you to read up ahead if you if as you are interested would be on OFDM orthogonal

frequency division multiplexing. So, again that is becoming bringing up the last, but one

unit of the course and that would be a very useful and interesting study because that is

covered in most of the 4G systems.

(Refer Slide Time: 02:17)

So, a quick review of what we have discussed in the last lecture. The MIMO framework

again just for reminder we have N t transmitted antennas N r transmit receive antennas

and what we would like to do is characterize this channel by a matrix and then we look at

the capacity of this channel when the information is known at the transmitter.



(Refer Slide Time: 02:39)

So,  what  we  are  doing  with  the  MIMO channel?  When  we  have  knowledge  at  the

transmitter  is  to  do  the  singular  value  decomposition,  and  the  singular  value

decomposition helps us to singular value decomposition helps us to apply the channel in

a in a parallel form and obtain L parallel channels.

(Refer Slide Time: 03:04)



Now, each of these an L corresponds to the rank of h, and corresponds to the non singular

non zero singular values that are present in the singular value decomposition. Now each

of these can be treated as parallel channels independent of each other, and in the last

class we also saw the benefits of introducing the additional power allocation to each of

these channels, now given that there is a total power constraint the total power constraint

is that the power transmitted in all the L channels together cannot exceed a total value

uppercase  P,  and  within  each  channel  depending  upon  how  much  power  has  been

allocated we then derive an expression for the SNR. 

Now the reason for the and the importance of the SNR is that this will help us apply the

capacity the estimate the capacity because the capacity is related to logarithm base 2 of 1

plus SNR. So, again that is the reason why we are focused on the SNR.

(Refer Slide Time: 04:11)

Now, the power allocation strategies we have seen four of them, the first one was give

power only to the best channel. So, you give all your if your singular values are written

in decreasing order, then the channel number one is the one that has got the best SNR

and you give the  total  power to  channel  number  one.  Now the  channel  equalization

approach, where we if we saw that if you apply the power allocation such that it cancels

out the effect of the singular value; basically what we would say is the power allocated is



in proportional to 1 by sigma i square. So, if you remember the SNR is sigma i square

times P i, now if Pi was 1 by sigma i square then those 2 terms will cancel giving you rho

as the SNR of each channel. So, more or less what the channel equalization approaches

does is to allocate enough power. So, that all the channels appear to have equal SNR.

Now, again whether this is a good strategy we will have to see the best option that we

have is for us to do water filling as we have done in the case of the single antenna system

we find that the different parallel channels, have got different SNRs and the water filling

approach depends on us computing gamma naught, which is the water filling level and

then computing the power to be allocated to each of these channels. Now if any of the

channels has an SNR that falls below a threshold what we are plotting here is 1 by sigma,

sigma 2 square rho. So, it is like the reciprocal of the SNR. So, which means that it is the

reciprocal of the SNR exceeds the water level no power allocation is done.

So,  for  example,  this  blue  channel  does  not  have  any  power  allocation  done  to  it;

however, the other three channels do have power allocation as per this figure, and the

best channel of course, gets the most power allocation. And the fourth one which we

mentioned in the case of an asymptotically, where all the L channels got good SNR was

to have equal power allocation each of these channels P 1 to p L have got a 1 P divided

by  L equal  power  allocation.  Again  4  approaches  each  of  them giving  us  different

insights, but most importantly the best approach be the water filling approach, which

says that this is what will help us get the maximum performance out of the system.



(Refer Slide Time: 07:02)

Now, we would like to focus on the case where we do not have the information at the

transmitter, the channel information of the transmitter. So, which means that I cannot do

parallel decomposition.

So, this is the case where we would have to derive the channel capacity based on the

entropy of the channel. The definition of entropy that we have introduced in the last class

is channel capacity is entropy of course, being a measure of uncertainty,  the channel

capacity  given  by the  entropy of  y  minus  the  entropy of  y  given x.  So,  that  is  the

definition that we have and what we would like to do is build on that. Now the if it was a

source with a finite alphabet, then each of those alphabets were having a probability Pi,

then the entropy of the source would be summation Pi logarithm base2 of 1 over Pi,

which can be expressed as expected value of minus logarithm base 2 of Pi of. So, that is

the for a discrete source. For continuous source the probabilities are expressed to the p d

f, f subscript x of x. So, the entropy would be minus integral of minus infinity to infinity

f x of x logarithm base 2 f x of x, d x and this can also be written very compactly as

expected value of the logarithm base 2 of the p d f and that would be the number of bits

per symbol.

So, what we would like to do is pick up from here, and then develop the concepts and in



terms of understanding the MIMO channel and all  of the elegant  results  that we can

obtain with that. So, as a first step I had requested you to look at the scalar complex

Gaussian with a p d f, f x of x equal to one over pi sigma square e power minus mod x

squared by sigma square.

 (Refer Slide Time: 09:08)

So, basically we are interested in computing logarithm base 2 of f x of x. So, logarithm

base 2 let  us  do the quick calculation,  logarithm base 2 of  f  x,  of  x  that  would  be

logarithm base 2 of 1 by pi sigma squared e power minus mod x the whole squared by

sigma squared logarithm, and then expected value. So, after we take the logarithm we

would then be interested in taking because. So, because basically what we are looking

for is minus expected value of the logarithm base 2. So, this would be minus expected

value of this expression ok.

So, if you were to calculate this will do the logarithm for as a first step and then the

expected value at the next step, the first step gives me minus logarithm base 2 of pi is the

denominator,  minus  logarithm  base  2  of  sigma  squared  and  then  the  final  term  is

logarithm base 2 of ah e power minus of an exponent. So, what we would like to do is

write it in terms of the logarithm base 2 I split it as logarithm base 2 and logarithm base

e. So, using the result that we had given in the last lecture, this would be plus logarithm e



base 2 times the natural logarithm base e of e power minus x square by sigma squared,

and so that would give us the following result minus mod x squared divided by sigma

square. Now take the expected value inside and make note of the fact that expected value

of mod x squared is equal to sigma squared.

So, therefore, the when you take the expected value this term within this bracket the

expected value of this term becomes equal to 1, and when we do the simplification what

we find is what we have is logarithm base 2 of pi plus logarithm base 2 of sigma squared

plus logarithm base 2 of e because the next term is actually equal to 1. So, this of course,

being using the property of logarithm, we can write it down as logarithm base 2 pi e

sigma square.  So,  this  is  the expression for  the entropy of  scalar  complex Gaussian

source. So, this is H of x, and this is a very useful result because this will also tell us how

we can expand this to the case where we are dealing with not scalar signals, but with

vector signals because in the case of MIMO the transmitted signal received signal are all

vectors. So, that is an important extension that we would like to do. So, basically if I

have a scalar Gaussian complex Gaussian source I know the probability distribution, I

know that the entropy is given as the minus expected value of logarithm base 2 of f x of

x, now the we took the expression substituted and simplified and showed that the entropy

of the source is equal to log of them base 2 pi e sigma squared.

(Refer Slide Time: 13:45)



Now, follow along with me for the next step which would be the case where we have a

complex Gaussian vector source. So, first step would be for us to write down the p d f of

a complex Gaussian vector, and then take the logarithm to the base 2 and then compute

the expression. Again these are a set of simple steps, but I would like you to follow along

and we will be using some of the results from linear algebra in our derivation. So, the

first step would be to write down the p d f I am writing x with the under bar to show that

this is a vector. So, the p d f, f x bar of f x of x is given by this is a n dimensional vector.

So, you will see the value n appearing in the expression. So, this is equal to pi raised to

the  power N determinant  of  matrix  R,  where  R is  defined as  the mac is  defined as

expected value of x x Hermitian. So, that is the correlation matrix. So, R is 1 by pi over

N determinant of e power minus x Hermitian R inverse times x.

So, this is the expression that we have and of course, you can definitely plug in the value

when it is a scalar and you can verify that when you substitute the value n equal to 1,we

will  get  back  the expression  that  we  had  in  the  previous  case.  So,  again  that  is  a

verification, but this is a n dimensional vector where x has dimension N cross 1 it is a N

dimensional vector. So, this is the expression that we have and H of x, H of x can be now

obtained in the following way, notice that this is now a scalar this is a vector and this

would  be  equal  to  minus  expected  value  of  logarithm  base  2  of  the  vector  p  d  f.

Identically  to  the  case  when  for  the  scalar  case,  which  is  extending  it  to  the  n

dimensional case. 

So, first step would be to calculate the logarithm base 2 of this expression. So, let us do

that. So, logarithm base 2 of f x of x can be obtained as the first term minus n log of pi,

minus n log base we are doing log base 2o. So, n log base 2 of pi plus or minus logarithm

base 2 of the determinant of R plus logarithm base 2 of e times the natural logarithm of

this expression. So, that would give us x Hermitian R inverse x. So, this is the expression

that we have this is logarithm base 2 is one term and then what we have. Now what we

are required of there is a minus sign there is a minus sign.

So, now we want to do the expected value with a minus sign. So, that will be minus

expected value of this quantity. So, what we will get is N log base 2 of pi plus log base 2

of the determinant of R plus log base 2 to of e. Now we have to take expected value of x



Hermitian R inverse x. Now in order for us to simplify this expression, I would now like

to make a following observation. now R is a N by N matrix the dimensionality of R is N

cross N. Now if you now then look at the term that we have if R is an N cross N matrix

the matrix R has got the dimensions of N cross N, and x has got the dimension of N cross

1, now if you then look at x Hermitian R times x this will have dimension 1 cross 1 or in

other words it is a scalar, x Hermitian R x is actually a scalar. So, we are take taking the

expected value of a scalar quantity, though the derivation is for a vector quantity what is

in the within the brackets is a scalar quantity.

Now, for any scalar we can write down that x is equal to the trace of x sort of trivially

because trace is the addition of the diagonal elements since x is a scalar there is only one

element which is also the diagonal element. So, we can write this. So, once we can write

this as a the trace if you were to look at the trace of X Hermitian R inverse x, gives us a

very very powerful result because trace has got in the following property. So, whenever

you have trace of a product of 2 matrices AB, assuming that the interchange the order

permits us to interchange the order. So, this also is equal to the trace of BA this is a result

that we have from linear algebra.  So, once we have this result then we use it in the

following manner, trace of x hermitian R inverse x.

If I were to treat the this as my matrix A and this as matrix B then what we have is the

following, that I can interchange A and B and write this as trace of R inverse times x

times x Hermitian. I am using the property that trace of AB is equal to the trace of BA.

So, once we write this write it in this form then we are able to look at the expected value.

Expected value of the trace of R inverse x x Hermitian, you can take the expected value

inside. If you take the expected value inside what we are left with is the trace of our

inverse R is already a constant matrix. So, expected the expectation does not affect it

then what we have. So, basically the bracket should be here expected value of the trace.

So, this is the there is a trace and then the expected value, and taking the expectation

inside. So, if what we are left with is a trace of R inverse times expected value of x x

Hermitian.

Now, notice that R is defined as expected value of x x Hermitian. So, when you do R

inverse times R, we will get the I will get the identity matrix. So, this will be the trace of



the identity matrix of dimension n. So, the trace is the addition of the diagonal elements.

So, therefore, this is actually equal to N. So, if you were to now use this result in this

expression we can now write the following.

(Refer Slide Time: 23:00)

We can write that the entropy of a vector source is given by n times logarithm base 2 of

pi, plus logarithm base 2 of the determinant of R, plus N times N coming from the trace

of the identity matrix logarithm of e base 2. So, we will rewrite this in the following form

write the first term and basically combine the terms in inside the logarithm, the first term

will be pi raised to the power N that is the first term. The second term gives us e raised to

the power N as you can see, and then the third term gives us a determinant of R ok.

Now, there is another result which says that if I multiply all of the elements of a matrix

by a constant alpha. So, basically if I take alpha times R and then take its determinant,

then what we get is alpha raised to the power N times the determinant of (Refer Time:

00:00), because every element in your determinant computation has got alpha power N

because each of them has got the factor alpha. So, based on this result we can rewrite this

into the following form, the form that we would like to write it is logarithm base 2.

Now,  I  am taking  these  2  constants  inside  the  determinant.  So,  it  logarithm base  2



determinant of pi e times R. So, pi e is the multiplicative factor, it multiplies each of the

elements of R. So, therefore, when you take the determinant you what you will get is pi

power n e power n determinant of R, basically using this razor. So, the important result

for us is that when you have a complex Gaussian vector, x is a complex Gaussian vector

with the vector p d f, f x of x being given by the expression that we have for Gaussian.

Then we can compute the entropy of such a source, H of this vector source in terms of

these following expression logarithm base 2 determinant of pi e R, where R is equal to

expected value of x times x Hermitian. So, this is a very useful result and we will use this

very extensively in our discussion of the capacity of the of the MIMOs channels system

when we do not have the information about  the transmitter  about  the channel  at  the

transmitter side ok.

I hope you will have a chance to relook at this and derive the results. So, that you are

very comfortable with this result. Now let us move back to the MIMO system that we

have. 

(Refer Slide Time: 26:40)

So, the MIMO system that we have gives us a vector y equal to H times x plus the noise

vector again this is how what we have we have expressed the. So, just the dimensionality

just for to remind ourselves, this is N r cross 1, H will be N r cross N t x is N t cross 1



and n is N R cross 1 again this for completeness the dimensionality. So, now, if I wanted

to understand the capacity of this MIMO channel H then I would look at the entrope or

the mutual information between the vector that was transmitted and the vector that was

received.  Mutual  information  between  x  and  y  from  the  scalar  case  we  now  have

expression in the form of a vector case.

So, this can be again using the same principles as for the scalar case, we can write this as

H of Y sorry H of Y minus H of Y given x, all of these are vectors H of Y given x. Now I

would like you to look at  the second term and we will  make a simplification of the

second term. So, just the second term alone H of the vector y given the input vector x can

be written as the entropy of the matrix H, maybe just to avoid confusion just in this part I

will use the script H for the entropy just. So, that we do not get confused because there is

a matrix H as well. So, the script H represents the entropy and the plain H and channel

matrix. So, this is equal to H x plus in that is the expression for y given x. So, that is the

entropy that we are interested in computing. Now entropy is the measure of uncertainty

now if you look at this first term H x, once you are given x and you know H there is no

uncertainty  in  H x.  So,  therefore,  what  we can  say  is  the  first  term can be  omitted

because there is no uncertainty after once you know x once you are given x there is no

uncertainty in H x.

So, the uncertainty only will be because of the noise and therefore, it will be the entropy

of n given x. Now we have also made the assumption that we also made the assumption

that there is no correlation between the noise and the input sources. So, therefore, what

we can write is H of n given x basically there is no information that you can get about the

noise from the input vector x. So, therefore, this can be written as the information of the

entropy of the noise vector itself. So, just by a 2 step argument we have shown that y

given x is the same as n itself.

So, this expression for the mutual information can now be written in terms of the entropy

of y minus the entropy of n, using the result from this discussion. So, given this and the

fact that we know that for any vector source,  we said that for any vector source the

expression for the entropy is given by logarithm base 2 of pi e times sorry pi determinant

of logarithm base 2 of the determinant of pi e times R. So, that was the we will write it as



R subscript x. So, when you have the we want to compute the entropy of the vector x, we

then have the this expression that we have. So, basically now we should be able to write

down the mutual information in the following manner.

So, this will be logarithm base 2 of the determinant of pi e R y logarithm base 2, minus

again for the vector n it will be logarithm base 2, determinant of pi e of R n. Now keep in

mind that y is has dimension N R cross 1, N has dimension N r cross 1. So, if you were

to simplify these expressions or then this can be actually written in the following form

the pulling out the constants pi and e. So, it will be logarithm base 2 pi power N, e power

N determinant of R y minus logarithm base 2 pi power N actually it should be N r, pi

power N r e power N r times determinant of R n. Now again a simple simplification step

combining the 2 logarithm terms, this can be written as logarithm base 2, you divide one

term by the other the constants pi power N r and e power N r get cancelled, what we are

left without let me just write it down, pi power N r e power N r determinant of our y

divided by pi power N r, e power N r determinant of R n. Of course, the simplifications

cancel these 2 terms and what we are left with as the mutual information or the capacity

is logarithm base 2, determinant of R y can be written in terms of the x (Refer Time:

34:06) maybe we should obtain the expression for the determinant of our of R y. So, let

me just take one more step.

So, R y would be given by expected value of y y Hermitian substitute the expression for

y H x plus n, expected value of H x plus n times H x plus n Hermitian. Now when we

multiply these 2 terms there will be 4 terms out of which 2 terms have got the cross

products, the cross product of x with n, x n n. Now when we take the expected value both

x and n if they are n is a zero mean complex Gaussian vector. So, therefore, we are then

able to say that the expected value and they are uncorrelated.

So, therefore, when you take the expected value those cross terms will go to 0, leaving us

with only 2 terms that we need to be careful about. So, this would be equal to expected

value of the following expression H times x times x Hermitian times H Hermitian x

mission times H Hermitian. So, that is one term that is will be nonzero, and then the

second term that will be nonzero that we expected value of n n Hermitian. The there

would be 2 cross terms which plus 2 cross terms with expectation 0, we will just mention



that plus 2 cross terms with expected value with expectation equal to 0 because of the

zero mean property of then of the noise vector. So, given this then what we can write

down is take the expectation inside this is nothing, but H times R x times H Hermitian

plus the second term becomes the R of the or correlate autocorrelation matrix of the

noise vector.

 (Refer Slide Time: 36:53)

So, using this result if this was equation 1 and this was equation 2 then we can write

down  the  combined  expression  for  the  channel  capacity.  I  of  x  comma  y  mutual

information  or  the channel  capacity  can be written  in  the following form. It  can be

written as the logarithm base 2 of the determinant of the following where you have H

times R x plus the H Hermitian plus R n divided by the determinant of R n. This is a very

very useful expression for us in terms of the capacity of the MIMO channel. So, and

keep in mind that we would like to maximize the mutual this mutual information and

thereby maximize the capacity. So, we can now say that the capacity, the capacity of a

MIMO channel. Capacity of the MIMO channel can be obtained as the maximization of

the or the mutual information x y subject to the constraint that we have a maximum

power limit,  and the maximum power limit  if  you notice consists  of the power with

which we have transmitted  each of the transmit  signals,  x one through x L and that

comes in terms of the total power level. So, if you take expected value of x times x

Hermitian, what we will have along the diagonal n elements will this will be expected



value of x 1 squared other terms, other terms, second term will be mod x 2 squared other

terms and then finally, we have mod x N t whole squared mod x N t squared. So, this is

basically what you have along the diagonals are the powers of the signals transmitted by

each of the antennas.

So, if you take look at R x, this is R x and you look at and take the trace of R x. The trace

of R x actually  gives you the total  transmit  power this  is  equal to  the total  transmit

power, because you have N t and transmit antennas and you have taken expected value of

mod x squared from each of these antennas the transmission.  So, what it  says is the

power constraint  can be written  in  a  very compact  form such that  you are trying to

maximize the mutual information sub using the constraint that the transmit power the

trace. The trace of R x is less than or equal to the total power P, and we will maximize

this over all possible R x that means, that you are looking at various power distributions

and based on this power distribution you want to find out such you want to maximize the

mutual information under the constraint that you have a total power constraint. So, this is

a very very useful and powerful formulation, in order for us to simplify the expression

we will now make a important assumption which will help us get a feel for the capacity

of the channels.

Now, if you look back to 2 lectures ago we made in the equation Y is equal to H x plus n.

We made three Gaussian assumptions, the first Gaussian assumption was the entries of H

that  these are  complex Gaussians  which  will  give  us  a  Rayleigh  distributed  channel

coefficient  between  each  of  the  pair  of  antennas.  So,  that  was  the  first  Gaussian

assumption, the second Gaussian assumption was for regarding the noise that these are

zero mean uncorrelated Gaussian noise samples, and then the third one that we said was

for  the  ease  of  analysis  we will  also  make the  assumption  that  the  vector  x  is  also

Gaussian has got a Gaussian distribution. So, that was the third Gaussian assumption that

we had made.

Now, if you make the assumption that x is Gaussian, then we are also able to simplify

this  expression  because  in  that  case  the  capacity  of  a  Gaussian  distributed  random

variable at the input then tells us that we can write down this maximization in a very very

compact form. So, if x is a complex Gaussian, has got a complex zero mean Gaussian. If



this was the distribution or the statistical characterization of x, then we can write down

the following the x has got a variance sigma squared it is a zero mean complex Gaussian

with variance sigma square and therefore, maybe we write it as sigma x square avoid

confusion, we can write down expected value of x x Hermitian. Now because they are

zero mean the cross terms will  go to 0 the diagonal  terms will  be equal to  sigma x

squared times the dimensionality of x.

So, if x is a complex zero mean complex Gaussian. So, basically if x is N t cross one this

will be I of N t. So, this is a very very useful result and based on this result we can now

write down the channel capacity because we are now dealing with a complex Gaussian

vector very easy for us to compute the maximum entropy and therefore,  the channel

capacity. So, the R x is given by sigma x squared times I N t.

(Refer Slide Time: 44:02)

So, the expression for the channel capacity, the channel capacity given by C divided by

B, this is equal to the expected value of logarithm base 2 of the determinant of H R x

times H Hermitian plus R n, H Hermitian plus R n divided by the determinant of R n and

if you now simplify this expression as we have indicated, then what we can write this

down in the following way. That this is equal to the expected value of the logarithm base

2 of determinant H R x, H Hermitian plus R n times R n inverse and this is within the



bracket. So, again using the property that R the R n inverse R n inverse is equal to the

identity matrix. So, therefore, the determinant of R n 1 by determinant of R n is equal to

determinant of R inverse.

So, using this result we can simplify this expression and basically take R n inside also

write down the simple substitute for the R x expression. So, this we can write down as

the in the following manner, this is equal to expected value the of the logarithm base 2

this is the Ergodic Capacitythat is why there is a second expectation. Ergodic capacity is

expected value of logarithm base 2 of determinant sigma x squared just for reference R n

also has got the similar structure it is sigma n squared times I N t. So, we can write this

down as sigma x squared by sigma n squared what is within the inside is H times H

hermitian plus sorry this is R xs H times H Hermitian, plus I times N r determinant of

this expression. So, this is the and the units of this are in bits per second per hertz and

this is also called as the log debt capacity the reason why it is called log debt capacity is

because we are taking logarithm of a determinant. So, this is called the log debt capacity

of a MIMO channel ok.

So,  what  are  the  key  elements  of  the  log  debt  capacity  we  have  said  that  there  is

information it is a N t transmit antennas N r receive antennas, there is no information

about the channel is not, available at the transmitter. So, therefore, we would have to go

for Ergodic capacity, we have obtained the expression for the mutual information. Once

we have the expression for the mutual information we are then able to in a through a

series of steps we are able to get the expression for the mutual information, then if you

make the assumption that the input vector is also a complex Gaussian then we get the

following simplification where we can write down the argotic capacity in terms of the

log that formula log debt capacity formula. Logarithm base 2 of the determinant sigma x

squared  variance  of  the  vector  x  components  of  x  sigma  n  squared  various  of  the

component  of  the  variance  of  the  components  of  n  H which  is  the  matrix  times  H

Hermitian times I N r ok.

So, this is our baseline expression this is what we have as the log debt capacity,  we

would now like to build on this in the next lecture for a brief period, to understand how

this log that capacity can be validated in terms of the capacities that we are familiar with



for  a  MIMO  channel.  For  example,  the  typical  MIMO  channel  could  be  received

diversity, we also have talked about transmit diversity, now Alamouti scheme how does

that fit in into this. So, basically give given this a framework of a MIMO channel, that

we are now able to derive the log debt capacity under the conditions of only CSIR that

means, the channel information is only available at the receiver not at the transmitter. So,

based on that we now will be able to do the rest of the analysis, and that we will pick it

up in the next lecture.

Thank you. 


