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Good morning and welcome to lecture 52 in our series of lectures in the introduction to

wireless  and  cellular  communications  course.  We  will  quickly  review  the  contents

covered in lecture 51 and then focus our attention on the topic for today which will be

primarily on the multiple input multiple output framework in which is used widely used

in fourth generation and the fifth generation systems.

So, for a quick review of the material covered in the last lecture, the at last lectures last

couple of lecturers have been focusing on the topic of multiuser detection, and we have

been looking at the three different solutions.

(Refer Slide Time: 00:57)

The first one being the optimal or the maximum likelihood detection of the solution,

which is given by the vector b 1 which maximizes the metric given in this expression, we

said that this would require us to consider all possible combinations of the vector b 1

which grows exponentially in complexity.

So, therefore, the maximum likelihood receiver is something that would be very complex

in  terms  of  implementation,  when  there  are  large  numbers  of  users  and  when  the



constellation of the signal being transmitted is of a large dimension. On the other hand

we have sub optimal solutions, which perform reasonably well in several of the practical

scenarios.  So,  if  we have  K synchronous  users  b  1  through b  k  each  of  them have

transmitted a symbol, the goal is to find identify the received symbol the transmitted

symbol based on the received signal R. decorrelating receiver gives us a very simple and

elegant solution, which says we can compute the receiver transmitted symbols by means

by computing R inverse r and then applying the decision based on this statistic.

The MMSE or the wiener filter which we discussed in the last lecture does something

very similar way our goal is to obtain a linear based on a linear transformation of the

received vector, the output of the K correlators. If you denote that as r we want to express

the received the b hat as A times r, and we have obtained the best expression for which

will minimize the error between the decoded symbols and the transmitted symbol. So,

that is given by R plus N naught D inverse r, and the whole inverse and this we found

was  a  good  way  to  summarize  the  three  different  options  the  optimal  solution  the

decorrelating receiver, and the MMSE receiver we also showed how the MMSE receiver

in the case where the noise is not very significant.

If you can ignore the noise actually corresponds to the decorrelating receiver, and in most

of the practical scenarios where the noise may not be negligible, then the MMSE you

would  be  a  better  option  compared  to  the  decorrelating  receiver,  because  the

decorrelating receiver by its structure may cause enhancement of the noise. So, that is a

summary of the CDMA multiuser detection, the schemes and again I would encourage

you to read have up from the different textbooks, and reference books about the different

approaches that we can use for multiuser detection.

Now, one of the key points in the derivation of the MMSE solution was the principle of

orthogonality, again I will just mention it so that we have a good summary of the recap.
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So,  the  principle  of  orthogonality  can  be  explained  geometrically  in  the  following

fashion. The if a is the vector that we are trying to approximate we are approximating it

with the components in the x and y plane. So, the best approximation will be a hat which

corresponds to the point perpendicularly below perpendicular projection of the point a

into the xy plane. So, the point that the best approximation also happens to be the one

that produces the minimum error, and geometrically we can see that the point the point

that produces the minimum error will be perpendicular to the components that constitute

a hat and to a hat as well.

So, the principle of orthogonality states that the optimal solution is one in which the error

becomes perpendicular to the input. So, that is the principle of orthogonality and it helps

us simplify the objective function, and also derive the expression for the MMSE receiver.

So, with this we will conclude our discussion on CDMA, and we will move into our next

topic  which  is  the  study  of  multiple  input  antennas  at  the  input,  and  multiple  and

antennas at the both at the receiver and at the transmitter.
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So, in the last lecture we introduce the following diagram, where we have a set of N t

transmit  antennas,  each  of  the  transmitter  transmit  antennas  is  transmitting  a

corresponding a symbol x 1 x 2 to x Nt, notice at each of these antennas are transmitting

different symbols, each of the symbols or transmissions are received by the Nr received

antennas and we are now required to process this information to identify what were the

symbols that were transmitted at on the transmitting transmitter side. So, we would now

like to go into this subject little bit more in detail.

(Refer Slide Time: 06:07)



So, again a looking at it in the pictorial form and translating it into equations we can

write down the received signal for the first antenna as h 11 which represents the transfer

function between the first transmitter antenna and the first receive antenna, likewise you

have the different transmission gains h i j the notation would be h i j is the again or the

channel gain from the j th transmitter to the I th receiver channel gain from transmitter j

from transmitter j to receiver I antenna i ok.

So, that is the notation that we are following. So, we are now trying to write down all the

elements or the components of the signal that is received by antenna one. So, h 12 would

be  from  the  second  transmit  antenna  to  the  first  received  antenna  likewise  all  the

different Nt antennas and their corresponding symbols that they have transmitted, and of

course, the receive antenna one will have a component of noise which corresponds to the

thermal noise in the receiver electronics.

So, if we were to write down for each of the Nr received antennas, then we would get the

expression in the form of a matrix, where the dimensions of the matrix are important we

have Nr cross 1 received vector, N t cross 1 transmit vector and a transfer function matrix

which is of dimension Nr cross Nt again the dimensions are important. So, please make

note of the dimensions, and the dimensions of the noise vector. Since this corresponds to

the receive antennas and then there are Nr received antenna this would also be an Nr

cross 1 vector that would be. So, as we mentioned in the last lecture, the MIMO problem

statement is that we can write down the input output equation for a MIMO system in the

following way, y is equal to h x plus n the MIMO problem statement says given y, that is

you can observe the outputs of the MIMO system or the received signal vector at the

receiver antennas, and assuming that the channel transfer matrix h is completely known

between the Nt transmit antennas and the Nr receive antennas, and we are now required

to estimate x.

So, this is the problem statement maybe a couple of comments that we would like to

make even to motivate the topic. Now as you can see when we want to detect the signal

transmitted  by antenna 1 x 1,  and we are  observing the  received signal  received by

antenna 1 y 1.

So, signal transmitted by antenna one, signal received by antenna one. So, basically this

is  what  we are  interested  in  we find  that  there  are  number  of  other  terms  that  will



interfere in or without observation. So, in other words MIMO system is one in which we

have the inter antenna interference. So, we have noticed that this could be described as

inter antenna interference. When I am trying to detect the symbol transmitted by antenna

one, I find that the signals from the other antennas are also interfering; however, notice

that there are multiple observations in which the contribution of x 1 is present.

In fact, in each of the Nr observations n one is x 1 is present. So, given this environment

what  we  find  is  that  what  we would  have  considered  as  impairment  intern  antenna

interference actually turns out to be to our benefit, because we actually have multiple

copies or multiple observations of the transmitted symbol x 1 of n. So in fact, we can

make a better and more robust decision regarding x 1 of n, while at the same time being

able to make robust decisions on each of the different transmitted signals. So, that is the

strength of a MIMO system.

So, we are able to control or manage the interference, such that we are able to make

better decisions or in other words we are able to get additional performance because of

the  diversity  benefit  of  the  multiple  antennas  and.  So,  we  are  able  to  improve  the

performance and notice we are also at a given time transmitting multiple symbols. So,

we are improving or increasing each other that total capacity of the system. So in fact, in

the interference environment is not impairment, but actually becomes a benefit to us.

So, in the case of a MIMO system, what we find is that we are able to increase capacity.

So, that  is  a added benefit  that  we are able  to get.  We are also able  to improve the

performance. So, we are able to get the diversity benefit and the combination of these

two is what makes MIMO systems very interesting, that we can get both improvement in

performance and improvement in capacity.

Now, where did we pay the price? The receiver now becomes a more complex receiver

because the, but that is something that we can of course, be willing to pay because we are

able to be getting such a significant benefit. So, the receiver complexity goes up. So, at

the cost of additional  signal processing,  we are able to get better  capacity  and better

performance and that we believe is a very good tradeoff in our context and also our

ability to work with the systems.

So, given the scenario now let us see if we can go a little bit further and describe the

problem formulation. So, in this context first we would like to make our clarify our state



some of  the  assumptions  that  we are  making.  So,  here  are  assumptions  that  we are

making about the quantities that are in our expression.

(Refer Slide Time: 12:51)

So, we have an expression Y is equal to H x plus n. So, we will have assumptions about

the n elements of H, the elements of n and also elements of x. So, we will call it as the

assumptions  that  we  are  making.  So,  the  first  one  are  is  the  assumptions  about  the

elements of H.

Now, as we mention the matrix H is a dimension Nr cross Nt matrix, which has elements

h i j they represents a complex gains between transmitter antenna transmit antenna j to

received antenna i. So, hij the elements of the transfer matrix, these are complex values h

i j s are complex, they are also Gaussian and they are zero mean. So, complex Gaussian

zero mean therefore, their envelope would be Rayleigh as we have discussed before, and

this is a assumption that each of the channel coefficients are Rayleigh a distribute.

So, magnitude hij is a has a Rayleigh distribution. So, this is a assumption that we are

making because working in a wireless environment and we are so, basically Rayleigh

distribution would mean that there is no line of sight component, but in the transmitter

and receiver, but the received signal envelope has got a Rayleigh distribution and we also

make the assumption that the each of those elements channel gains are independent of

each other.



So, basically they are independent complex Gaussians with zero mean. So, that is the

assumption  about  the  channel  matrix.  Now  this  also  corresponds  to  an  important

characterization such a description of the transfer function basically says that the channel

is flat, in other words the channel gain between the transmit antenna and the received

antenna corresponds to a single coefficient, it is not a transfer function. So, it is not if it is

a flat fading channel.

So, an important classification is that it is a flat fading channel, which has got really

characteristics  and  because  each  of  these  large  number  of  channel  gains  are  all

independent of each other such an environment is called a rich scattering environment.

So, the assumptions that we are making is that we have Nt transmit antennas Nr received

antenna and that it is a rich scattering environment which means that it encompasses the

following, that each of the channel gains is an is a complex value, it is a flat fading

channel and each of the channels are independent of the other channel. So, that is the

summary of the statement that we have. Now the second statement would be about the

noise elements. So, we describe the noise components in each of the receive antennas as

white  spectrally  white  they  are  complex,  they  are  complex  valued  because  we  are

looking at the complex baseband signals. So, it is they are complex, they are Gaussian

and zero  mean.  So,  basically  it  would  be a  zero  mean AWGN type  of  environment

additive white Gaussian noise which is zero means.

So, just as you would characterize the properties of a white noise, basically we can write

it down in terms of the correlation matrix or the co variance matrix which as that if I take

the expected value of the vector n times n Hermitian, where the vector n corresponds to

the noise terms in each of the antenna received antennas. So, this is n 1 of n all the way

to n Nr of n, if this is the vector presenting the noise samples then expected value of n

times n Hermitian because they are complex white Gaussian noise samples, and they are

uncorrelated with each other we can write down this expression as sigma n squared times

I the identity matrix time with the dimensions of that would be Nr. So, that would be the

description of the noise components.

Now,  in  order  for  us  to  do  the  capacity  calculations,  we  will  also  make  a  third

assumption.  The  third  assumption  is  about  the  characteristics  of  x.  Now  x  is  the

transmitted signal typically  in a digital  communication system this  would represent a

QPSK or  a  QAM symbol.  So,  we  normally  assume that  x  is  the  transmitted  signal



represents  a  constellation  point  in  the  IQ  plane,  but  for  the  purposes  of  capacity

calculations we will also make an assumption which is different from the usual one, but

again more from the point of view of capacity calculations.

So, we will also make the assumption that x of n, the single that is translate single that is

transmitted by each of the antennas x of n is also a Gaussian distributed variable. So, we

will  assume that  x of n is  x i  of n is  also a complex Gaussian with zero mean and

variance sigma x square. Again the reason for this would become clear when we talk

about  the  description  or  the  calculation  of  capacitors.  So,  we  have  made  three

assumptions,  all  of  which  are  pointing  to  Gaussian  assumptions  in  this  equation  the

channel gains are complex Gaussian.

The received signal noise samples are complex Gaussian, and again the third assumption

for the purpose of capacity calculations will be the assumption on x.

(Refer Slide Time: 19:50)

Now I would like to go back and re look at the equation that we have written down. So,

the MIMO equation a MIMO system can be represented in terms of Y is equal H x plus

n, and we are told that we are we have the observations of y and H is known, and we are

trying to find out what is x.

Now, given this an environment and for a moment if we can ignore the presence of the

noise, one possible way for us to do it if H were invertible would be the following. So,



one a possibility is that you transmit x possibility one, that if you received x and you

know H,  you can  do  h  inverse  times  y.  So,  this  is  what  we referred  to  as  channel

inversion, this makes some assumptions first assumption is that H is a square matrix

square in and it is in invertible matrix, that is its non singular. So, this itself is a fairly

restrictive  assumption  which  tells  us  that  the  number  of  transmit  antennas  and  the

number  of  received  antennas  must  be  the  same,  and the  transfer  matrix  must  be an

invertible matrix or a non singular matrix.

So, again we cannot guarantee this in all scenarios because some of these are random

phenomena and we cannot guarantees this type of an assumption. However, if in when

you  think  along  these  lines  we  can  also  think  of  a  possibility  2  number  2  and  the

possibility 2 says that you do before you transmit the signal x what you can do is you pre

code the transmitted signal. So, basically instead of transmitting x you transmit h inverse

times x. So, at  the transmitter  itself we are making a modification of the transmitted

signal.

So,  instead  of  transmitting  x  we  are  transmitting  each  inverse  times  x,  again  this

introduces a way of thinking. So, if H is known at a transmitter and this is what we

referred to as CSIT channel state information at the transmitter, then we can do a pre

coding option, this is what we referred to as a pre coding. Pre coding is something that is

done at the transmitter with the knowledge of the transmission channel. So, we do H

inverse times x, and we call that as x tilde. Now if x tilde is transmitted then what I

receive will b Y is equal to H times x tilde, and this will be nothing, but H times H

inverse times x and a plus noise, plus noise and this would also give me y is equal to X

plus the noise.

So, in other words we are able to obtain the received signals as a signal or a decision

process where you do not have the effect of the inter antenna interference, again we are

able to make a decision independent of the other. Again this is only under a very limited

set of conditions and when the when it is a H is a square matrix and it is also invertible of

course, we would be interested in a much larger family of solutions where H is not a

square matrix. So, if H is not a square matrix, then what are our options?

So, H is a rectangular matrix N r cross Nt, the channels the coefficients of this matrix are

complex Gaussians now under this assumption, what are the options that are available?



And if it turns out a very general solution can be obtained which is what we will now

derived. So, the result that we are going to be looking at is something that many of you

would have studied in the context of a linear algebra and in a complex variables, this

would be the concept of singular value decomposition.  Singular value decomposition

again I am assuming that most of you would be familiar with it. So, I will just give a

quick overview of the key results that we would need for our discussion and again I

would refer you to any book on the linear algebra for the results of or the main elements

that we would need for the singular value decomposition.

So, the statement of the singular value decomposition states that any rectangular matrix

which would fit our description of our matrix h, any rectangular matrix which can be real

or complex valued,  in  our case it  will  definitely be complex valued and.  So, such a

matrix  A which is  of  dimension N cross  M where N and M are different.  Now the

statement of the singular value decomposition or the SVD theorem states that the matrix

a can be written in the following from, where A can be written as u times sigma times v

harmitian and we will describe each of the component terms now, where the matrix u is a

matrix which is a unitary matrix.

So,  this  is  a  unitary  matrix  again  the definitions  of  unitary  matrix,  we have already

indicated.  So,  us  is  a  unitary  u  and  v  are  unitary  matrices,  which  is  given  by  the

following vectors u 1 u 2 up to u N. N is the row dimension. So, these are the what are

called the left singular vectors, these are the N left singular vectors of A of the matrix A,

it also turns out that we can relate these n in vectors as the Eigen vectors, we can also

relate them to the eigenvectors of an N cross N matrix of a matrix R which is given by A

times a Hermitian A times A Hermitian a being N cross M we can verify that R is a n

cross  n  matrix  it  is  a  positive  semi  definite  matrix  and  using  the  factorization  of  a

positive semi definite matrix we can then obtain the different vectors or u 1 through u n.

So, the next item that we want to define is the matrix V, V is also a unitary matrix it

consists of the following vectors V1, V2 all the way through V M, M is the column

dimension these are the m right singular vectors right singular vectors of A and like

before we can relate these to be related to the Eigen vectors of a positive semi definite

matrix in this case it is given by R equal to A Hermitian times A. So, if you look at the

two  variance  of  a  one  is  A Hermitian  this  one  is  A Hermitian  A this  would  have

dimension m cross m and these would be the Eigen vectors corresponding to that.
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Now, sigma matrix can be written as a diagonal matrix with the following values sigma 1

through sigma L, where sigma k is given by root lambda k, where lambda k can be

related to the non zero Eigen values of A Hermitian, AA Hermitian. It can also be related

to the non zero Eigen values of A Hermitian  A. Both of them have the same set of

nonzero Eigen values. So, this can also be read it can also be related to these. So, what

we have is that the matrix A can be written as u times sigma V Hermitian where the

dimensions we will write down this is a N cross N matrix, this is a M cross M matrix,

this would be an N cross M matrix.

So, one of the things is the what is the different basic reviews at term L, andL is related

to the rank of the matrix a and basically we can make the following statement. So, if you

look at our matrix H this has dimension N r cross Nt and we can make the statement that

the rank of H the rank of the matrix H it has to be less than or equal to it has to be less

than or equal to the minimum dimension between Nt comma Nr. So, this is what we

referred to as the dimension L the rank of the matrix of the so, assuming that we will

make the following assumption, assume that the matrix H is full rank, because we have

assumed a rich scattering environment.

So, if this case is full rank then the value L is equal to the minimum of Nr comma Nt the

rank is. So, in other words let me to say this, the rank this equal to L is less than or equal

to in the general case and when the H is full rank this is the case.
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So in our case we can have two options it could be either the case where N is less than or

equal to M, where we are looking at the matrix A which is of dimension N cross M; that

means, the number of rows is less than the number of columns in such a case then the

rank would be equal to N which is the lower dimension.

So, in such a case the matrix sigma can be given in the following form, it would be a

sigma 1, sigma 2 it is a diagonal matrix all the way to sigma n, and since that the number

of columns is more than the number of rows, the rest of the entries would be 0. So, this

would be the form when N is less than or equal to M, this would be the form that you

would get you would have the n non zero Eigen values, which they are represented along

the diagonal matrix and then you have the zero elements. Now for the second case where

N is greater than M, then now the rank becomes determined by the column dimension M.

So, in such a case the sigma matrix can be visualized in the following form, it is sigma 1

sigma 2 dot dot dot all the way to sigma m that is the column dimension, and since the

number of rows is more than the number of columns what we have the for the rest of the

entries it is 0. So, in one case where the number of rows is less than the number of

columns, we get the upper form and the second case when we have the number of rows

more than the number of columns then we get this form.

Now, of course, you can visualize the case where the matrix A is not full right, in which

case there would be minor modifications of this structure no keeping in mind that only a



subset  of these are  non zero,  and we have made the following assumptions  that  the

singular values are rank ordered that is sigma 1 greater than or equal to sigma 2 greater

than or equal to sigma n. So, if more of these are become 0 because the rank is not full

rank, then the dimensions of the non zero portion of sigma will reduce and you will get

more zero entries I would maybe leave that as an exercise for you to look at what it, how

it is this matrix sigma will look like if the matrix is not full rank.

But in our case we will make the assumption that the matrix is full rank so, the summary

of the material that we have presented so far.

(Refer Slide Time: 35:02)

If you look at the parallel decomposition of a MIMO channel which is N r cross Nt in

terms of dimension, that is the task that we have we assumed that we know the following

matrix which is h i j where I is equal to 1 through Nr j is equal to 1 through Nt it that this

is known, this is known and its full rank full rank ok.

So, basically we will assume that this is the problem statement. So, now, we can factorize

the matrix H in the following way, u times sigma times v Hermitian.  So, the MIMO

equation now becomes Y is equal to H x plus n, now this can be written as u sigma v

Hermitian times x plus n x plus n. So, basically we have submit the factorized form for

this, now here comes a very interesting two simple steps which make the MIMO problem

statement very interesting one. So, if I define the vector x in the following manner, if I

define the vector x to be equal to V times x tilde or in other words let me write it in a



slightly different way. I would now like to take this vector x pre multiplied by the matrix

V and we will call that as x tide.

So, a modified input is going to be provided to the channel. So, in other words we are

now going to feed x tilde. So, I have x, x tilde is going to be fed into the channel matrix

H. So, by using the original equation I will now get modified output and the modified

output we will call that as y tilde, and y tilde will be H times x tilde plus n. So, some

modified input and modified output to the same equal.

So, now substituting for x tilde in inside this expression, what we find that this is equal to

u times sigma times v Hermitian, x tilde is V times x plus n. So, this is y tilde. So, we

know that  since V is  a  unitary  matrix  v Hermitian  times  v is  a  identity  matrix.  So,

therefore, we can simplify this expression and one more step that we do if we now say

that y is equal to u Hermitian y tilde. So, basically I do a transformation of the received

vector, then this comes out to be u Hermitian u times sigma v Hermitian, v I have already

dropped this is remaining is x plus v Hermitian u Hermitian times n, u Hermitian times n.

So, that is the expression that we have.

Now, notice that u Hermitian u is also a unitary matrix. So, therefore, by unit matrix

property we can that it becomes the identity matrix. So, this gives me a result which is y

is equal to sigma x plus u Hermitian times n. Now we can treat this as a vector n dash

which  since  use  a  unitary  matrix  has  got  the  same statistical  properties  as  a  n.  So,

basically this is a modified noise vector, but notice the rest of the equation is very very

interesting, because the rest of the equation says that my input and output are related by a

diagonal matrix sigma is a diagonal matrix. Notice that we have completely removed the

presence of the inter antenna interference.

So, the effects of the in interaction between the different transmitted signals with the

different received signals have been completely removed by means of the two steps. The

first  one was a transmitter  encoding this  was a pre coding at  the transmitter,  so,  pre

coding  at  the  transmitter,  where  we did  V times  x,  and then  post  processing  at  the

receiver that that was obtained at the step; this is post processing at the receiver. Now

both of these are very simple steps both of which are matrix operations based on matrices

that are obtained from the singular value decomposition. So, this is post processing at the



receiver. So, a simple processing step at the transmitter a simple processing step at the

receiver gives us a very nice and interesting result, where we have this expression.
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So, let us do two things one is first let us write down the process that we have done, the

post the pre processing or the pre coding that we did at the transmitter, where we said

that we will take x tilde is equal to V times x. So, if you were to think of this as a

transformation or x 1 through x N t, V is a this is the matrix V, N t cross Nt that will

produce for us the different inputs the modified inputs x 1 tilde all the way to x Nt tilde.

So, that is what was given to us.

Now, this is passed through the channel this is a channel which is H. So, Y tilde is equal

to H times x tilde plus the noise that is represented by these channel elements. So, if you

were to connect these the modified input passing through the channel, and the channel

producing the outputs Y 1 tilde e to Y Nr tilde and then we have the post processing step

at the receiver. Where take this and do the following transformation where we say that y

is equal to U Hermitian times x, U Hermitian times Y tilde. So, if this is Y tilde then what

we get here are the outputs y 1through y Nr and this is the expression that we have

obtained

Again it is a very powerful result this is something that we will use repeatedly in our

discussion. So, we will write it in the following form, Y is equal to the post processing

step u Hermitian the channel, which is u sigma V Hermitian this is the channel times the



pre coded transmitter which is V times x. So, this is the and of course, we have the noise

element that is being added. So, this is the post processing step, this is the pre processing

one. So, this becomes the pre coding x tilde, this is my channel H. So, x tilde passing

through the channel H, produces the output Y tilde this whole thing is Y tilde and that we

have do a post processing at the receiver which is u Hermitian times Y, that becomes the

final step where this becomes equal to the vector y ok.

So, interesting way to visualize it, it is a transmission that is correspond that is from Nt

transmit antennas to Nr received antennas that is the original structure, but we have split

the transmission process in to pre coding a step, the MIMO channel followed by a post

processing step, and this is a good way to visualize it. Now another interesting way to

draw this figure.
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And I it I believe that gives us a lot of insight and what we would like to do is look at

how we can represent this. So, the parallel decomposition of a MIMO channel parallel

decomposition can be captured in the following form parallel  decomposition.  So, we

have Nt transmit antennas and we have Nr transmit antennas, but effectively the number

of channels the parallel channels that we have depends on the rank of the matrix.

Now, let the rank be equal to L; the rank of H equal to L, now once we have done the

parallel decomposition then what we can say is the parallel decomposition of the channel

looks like this, there is there are only L transmit antennas because effectively there are L



parallel  channels,  we can call  this  as x 1 tilde x 2 tilde x L tilde.  Now this will  get

transmitted  by  this  antenna  and  effectively  the  channel  looks  like  a  gain  for  each

antennas which is different.

So, for example, the first antenna experiences gain which is proportional to sigma one.

So, think of the gain as a multiplicative term which is represented by sigma 1 this signal

now has a multiplicative factor sigma 2, and the L th antenna has got a multiplicative

gains which is given by sigma L. So, each of the this  we are looking at the parallel

transmissions. So, there are L parallel transmissions and the parallel transmission have

got a diagonal gain which is sigma 1 through sigma L, which is what we are trying to

capture in our diagram here.

Now, of course, in any transmission system there will be the additive noise. So, this one

we get a noise term n 1 second branch we get a noise term n 2 and the third and the last

branch we get a noise term nL. Now this comes out at the receiver and this is what is

picked up by the received antennas. So, the number of the received antennas is also equal

to L, this is received antenna number 1 number 2 and the last one is number L and the

signals that we obtained are Y 1 tilde,  Y2 tilde and all  the way to YL tilde.  So,  the

parallel decomposition can be visualized in two ways.

One is the matrix representation that we have shown in this figure, the second way is to

think  of  it  as  parallel  channels  where  the  transmitted  signals  x  1  through  x  L are

experiencing  different  gains  and  this  noise  terms  notice  that  the  noise  terms  are  all

additive white Gaussian noise terms with the same variance and the received signal. So,

this if you were to describe it in equivalent form, consists of L parallel channels. Let us

write it down there are L parallel channels the noise variance in each of these.

So, each of them has got equal noise variance noise variance each of the noise terms is

sigma n squared. So, each of them have got the same noise variance, but each of them

have got different channel gains and if we have ordered our singular values such that

sigma 1 greater than or equal to sigma 2 all the way to sigma L, then what we find is that

we have a L parallel channels where each of the channels has got different signal to noise

ratio.

Notice that sigma 1 is a gain for the signal and on and on and channel one. So, there are

L channels each of the L channels have different Ldifferent signal to noise ratios SNRs.



So, SNR of channel one will be better than or equal to SNR of channel two better than or

equal  to SNR of  the channel  L.  So,  this  is  what  we have as  our or  ordering of the

channels.

So, to summarize we have a MIMO system, a MIMO system where we can represent the

input output by means of a transfer matrix. We have explained the assumptions that we

have made regarding the entries of this matrix. The next step was to the assumptions then

we did the singular value decomposition; the singular value decomposition tells us that

any rectangular matrix whether its real or complex in our case it is a complex valued

matrix it can be decomposed in the form u sigma v Hermitian, and the expressions for

the u v and sigma were obtained based on that we showed what the structure of sigma

would be depending upon whether you had the number of rows greater than the number

of columns or vice versa.

Then  finally,  we  can  write  down  the  expressions,  and  we  can  show  that  the  SVD

decomposition can be captured very nicely using matrix form or in terms of a parallel

decomposition for. Now notice that once you have done the parallel decomposition it is

also easy for us because each of these channels has got a corresponding SNR, we can of

course, calculate the channel capacities because we know that the capacity is related to

the SNR of the channel. So, the beauty of the SVD process is that we it is now enabled

us to do the separation of the channels at the in to parallel channels.

However keep in mind that one of the key assumptions that we have made in the obtain

the parallel decomposition, again maybe we should write it down it is a very important

assumption that we have made, and that is that the transmitter knows the channel CSIT

or at least it knows what it needs to do to obtain the matrix V Hermitian. So, because that

is what is required at the sorry it requires it requires knowledge of the matrix V so that it

can do the pre coding. So, this under this assumption we have obtained a very nice result.

Now, we; obviously,  have to ask question what is  the transmitter  does not know the

matrix V which is based on the parallel singular value decomposition or does not have

the CSIT. So obviously, we are interested in those situations where the this information is

not known to the transmitter. So, we would like to get a understanding of what could be

done in such a situation, when you do not have the ability to do the pre processing; what



would be the understanding of capacity in such a situation. So, in that regard we will

now study or in the next chapter next lecture.

(Refer Slide Time: 53:51)

We  will  be  studying  an  important  element  which  represents,  which  pertains  to  our

understanding of the concept of entropy. This is the same as the entropy that we would

discuss in information theory.

So, what we would like to do is get a understanding or review the basic concepts and see

how the  understanding  of  the  concept  of  entropy  can  help  us  in  understanding  the

capacity  of  a  MIMO  channel.  So,  capacity  of  a  MIMO  channel  based  on  our

understanding of the capacity or the concept of entropy, that will be the best contexts

content of the next lecture. So, please do review the material that we have covered today

and we will pick it up from here in the next lecture.

Thank you very much. 


