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Good morning and welcome to lecture 51, in last lecture we have been covering some of

the topics pertaining to multiuser detection in CDMA. So, we would like to begin today’s

lecture with a quick review of lecture 50 where we have been talking about the multiuser

detection in CDMA and in today’s lecture, we will introduce a new form of receiver a

sub  optimal  receiver,  but  one  that  performs  very  well  in  the  context  of  multi  user

environments that is called the minimum mean squared error receiver or MMSE receiver

for  multi  user  environments  and  this  will  be  built  on  the  well  known  principle  of

orthogonality in optimal filtering theory.

(Refer Slide Time: 00:37)

So, we would like to incorporate that in the context of an example, and with that we will

complete our discussion of the introduction to CDMA.

The next unit that we will be covering will be the topic on multiple antennas; multiple

antennas at the receiver multiple antennas at the transmitter. So, that would be refer to as

a multiple  input  multiple  output  or a MIMO system. So, we move from the CDMA



context into the multiple antenna environment and that would be the next or the lateral

half of today’s lecture. 

(Refer Slide Time: 01:43)

So, quick summary of the multi user detection that you have been so far; so, the problem

of multiuser detection if you were to think of it as a family of solutions, the first solution

that we refer to was the optimal or the maximum likelihood receiver, where we computed

through exhaustive search what was the vector that was transmitted by each of the k

users.

So,  our  assumptions  are  that  there  are  upper  K  synchronous  users,  each  of  them

transmitting a binary bit b 1 through bk, and our goal is to estimate the vector b1 through

bk at every instant of time that would be our multiuser detection problem statement. And

we saw that the optimal solution would be the maximum likelihood solution, and it is a

solution that turns out to be computationally intensive it is exponential and complexity in

terms of the number of users that are present in the system, and also depends complexity

increases with the size of the constellation that you are transmitting.

So, this would be a receiver that we would like to use, but if its complex. On the other

hand we have also looked at suboptimal receivers. So, in the last lecture we introduced a

very useful solution one that is widely used that is decorrelating receiver. So, this we

showed is  a receiver  that  has lower complexity,  but at  the same time achieves  good



performance, it has some limitations which we talked about yesterday and we will also

continue to discuss it today.

What  we  would  like  to  do  is  a  present  another  sub  optimal  solution,  but  one  that

performs  even  better  than  a  decorrelating  receiver  without  a  significant  increase  in

complexity. So, that is a second suboptimal receiver, but one that performs close to the

MMSE is also referred to as a wiener filter or a wiener filter based solution, we will refer

to it as the MMSE solution.

(Refer Slide Time: 03:58)

So, in a nutshell, the optimal ml receiver that we have talked about in the earlier lecture

optimizes the probability maximizes the probability, that we have transmitted a vector b

hat and the received signal r of t.  Now r of t  is a continuous waveform. So, we are

maximizing the probability that the received vector is r of t, when the a vector b hat was

transmitted. So, in other words given r of t we are trying to find that vector b hat that

maximizes this probability. So, using a series of a expressions and sets we have shown

that this b hat is nothing, but the vector b that maximizes this expression. And this is the

competition that we need to do for a maximum likelihood receiver and this is the other

the basis of the formulation that that we have shown. So, this is the expression we have

to try all  combinations  of the vector  b therefore,  numbers of the combinations  grow

exponentially as the size of the vector grows or as the size of the consolation grows. 



So, this is the maximum likelihood receiver metric, and you would optimize it over all

possible  b ones and choose the one that  gives us the best solution.  So, this  was the

optimal receiver or the maximum likelihood receiver.

(Refer Slide Time: 05:39)

Now on the other hand the decorrelating receiver was formulated differently. So, if the

received vector not the received continuous time wave form, but this is the vector of

outputs this is the outputs of the k correlators, and if you write down the expression for

that the output of the k correlators comes out to be r which is the correlation matrix

which takes into account the correlation between the different spreading waveforms.

The vector of which transmitted by each of the k uses plus eta the noise component that

is  present  in  the  measurement  of  each  of  the  antennas.  So,  if  this  is  our  underlying

equation then we should we showed that the decorrelating receiver competition is the

following. It says that the best that what we have is the best estimate of the transmitted

vector is nothing, but R inverse times the output of the k correlators. So, that would be

our expression for the decorrelating receiver, and again this is something that we spent

time deriving.

Now, just  as  at  the  close  of  the  last  lecture  we mentioned  that  it  is  good for  us  to

understand  the  why  a  decorrelating  receiver  works  and  what  are  the  underlying

mechanism. So, if you were to write down the expression just for a two by two cases

easy for us to visualize, we will see that the R matrix can be written in terms of the



correlation between the two spreading wave forms we call it as row, R inverse we can

write  down the expression and we write  down the expressions for  the output  of the

correlators, each of the correlators will produce the following expressions and R inverse

times r gives us the expression. So, this is the expression that we saw in the last lecture

this is where we saw that the decorrelating receiver, completely separate the two users

and therefore, we do not have any issues with the near far problem or the interference

from one user signal leaking and affecting the decision of the other users.

So, we see that there is a clean separation of the 2, we did make an observation that there

is a potential for noise enhancement because of the way the decorrelating receiver works

we have in the noise term 1 minus rho squared in the denominator, rho is the number that

is  less  than  1.  So,  therefore,  the denominator  will  become smaller  and therefore  the

expect the noise variance is likely to increase. Another very interesting way to visualize

why or how the decorelating receiver works, is to re look at the expression and this is

what we mentioned towards the end of the last lecture.

Now,  if  you  were  to  think  of  the  received  signal  r  of  t,  now  normally  you  would

multiplied with g 1 star of t, and you would then follow it up with the integrated. Now

instead of that if you multiplied it with g prime start of t, where g prime start of t is an

expression that is given in the following manner. G 1 of t minus rho times g 2 of t into 1

minus rho squared if you think of this is a modified de spreading waveform and then you

apply it is in this form r of t multiplied it with g 1 r of t multiplied by g 1 prime start of t

followed by the integrator you would find that the expression that we obtained is exactly

the expression that we got for r universe r.

So,  in  other  words  the  multiplication  by  the  inverse  of  the  correlation  matrix  the

correlation of the spreading waveforms, can be equivalently represented as a modified

spreadings de spreading sequence which takes into account the correlation between the

two  the  spreading  users.  Again  this  is  an  interesting  interpretation  that  helps  us

understand how a decorrelating receiver works. 
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So, the r 1 prime of t which is what you would obtain by using this expression by using

the r of t multiplied by g 1 prime star of t followed by the integrator, if you write down

the expressions you would get the expressions given on this graph and in this page which

is exactly the expressions that we got for when you multiply it by R inverse r.

So, this set of equations is identically equal to what we got by multiplying R inverse

times r. So, both are equal and one is multiplying by matrix inverse the inverse of the

correlation  matrix  the  other  one  is  doing  the  receiver  using  a  modified  spreading

sequence and both of us both of them give us an interesting perspective. 
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So, we have looked at the following example I would like us to quickly look at it once

more it is a two users synchronous CDMA, at the receiver the values of the output of the

first correlator and the second correlator are given by minus 0.08 and minus 0.47.

Now, given that this is a binary decision whether you want to declare it as a plus 1 or a

minus 1 with the threshold being at 0 both of these would map to minus 1, because both

of them have a value that is negative. We are given that the correlation matrix is 1 0.33

0.33 and one and using this information we first of all estimate the maximum likelihood

solution, maximum likelihood requires us to try all combinations would be four possible

combinations of the transmitted vector, for each of those we have computed the metric b

Hermitian r plus r Hermitian b minus b Hermitian R b, and with that we are looking at

the following different values of the metric, to find out which is the maximum all of

these are negative numbers. So, the maximum would be the least or the one with the and

maximum of these numbers is minus 0.56, and that corresponds to the second sector 1

comma minus 1. So, this was what we obtained as the vect.

Now,  if  for  the  same  problem  if  we  had  done  the  following,  we  had  done  the

decorrelating receiver which is R inverse times r. So, this would be the same as R inverse

times the matrix the vector that we have received minus 0.08 minus 0.47. Please do a

compute the R inverse matrix and you can find out that this corresponds to the following

expression R inverse r comes out to be 0.084, and this one corresponds to minus 0.498



and if you were now were to quantize this information into plus and minus 1, this would

lead to the following quantization.

The first bit would be since its positive would be mapped to a plus 1 then the second bit

would be to a minus 1 and we find that this is the same as the solution that the maximum

likelihood  receiver  also  obtained.  And  this  is  different  from  what  you  would  have

obtained had you applied the quantization directly to the output of the correlators. So,

there you have made a mistake it would have been minus 1 comma minus 1, where as the

correct answer is minus 1 plus 1 comma minus 1, which is consistent with the result

obtained in the maximum likelihood case, and also with the with the decorrelating case.

So, with this as the as the basis we would now like to move into the next section where

we would like to understand and implement  the performance of a  maximum MMSE

receiver, and this is the starting point for the second sub optical receiver that we have we

would like to study in today’s lecture and this is the formulation ok.

(Refer Slide Time: 14:21)

So, the decorrelating receiver. So, just for reference, the decorrelator receiver does the

following computation which says we are given the expression that the output of the

correlators is R times b plus eta and the decision vector b hat is given by R inverse times

r  that  is  the  expression  for  a  decorrelation  receiver  and  of  course,  if  you  were  to

substitute for r this would be R inverse times R times b plus eta, and expanding upon this

equation this would give us b plus R inverse times eta. And what we find is that the



decorrelating receiver is focused on obtaining an expression for the transmitted vector

while it does not pay much attention to what happens to the noise, and this is where there

could be a potential for noise enhancement.

So,  there  is  a  potential  for  noise  enhancement  in  a  decorrelating  receiver,  which  is

something that we have mentioned a multiple times because of its importance potential

for noise enhancement. Now how would you formulate another receiver which takes into

account the noise enhancement and this is where we would like to present the MMSE

receiver. Now we make the assumption that in an MMSE receiver that our best solution b

hat is the vector of outputs of the k correlators, multiplied by a linear transformation

basically a linear transformation of those vectors which is denoted by a constant matrix

a.

So, if you were to assume that the outputs are obtained as some linear operation on the

output of the correlators k correlators, that would be given by b hat is equal to A times r

and this would be our expression for the linear representation or in terms of the out of the

bits transmitted with respect to the output of the correlation. So, the MMSE criterion

says that we would like to minimize the error, and what is the error that we are trying to

minimize what does the vector that was transmitted and vector that was estimated and we

would like to minimize the square of this with the expectation in front. So, the metric

that we are looking at is given by the expected value of b minus b hat, and b minus b hat

is nothing, but b minus A times r, b times where b hat represented as A times r this is our

expression for the output of the an MMSE detector.

So, this Hermitian times b minus A r. So, the MMSE formulation is can be stated in the

following way very simply, we would like to find an expression for b which is a linear

combination of the output of the k correlators. So, that is assumption the first step one,

the  second  one  where  we  find  the  optimum  b  hat  is  by  the  finding  the  b  hat  that

minimizes the mean squared error between the transmitted vector and the vector that was

at the obtained as a decision.

So, the metric can be written in the following form, where it is a expected value of the

magnitude squared which is given by b minus A Hermitian b minus A r. Now one of the

very powerful results in optimal filtering theory is something known as the principle of

orthogonality and what we would like to do is give a intuitive expression for principle of



orthogonality, and use that in our derivation of the MMSE receiver. So, here is a quick

overview of the principle of orthogonality.  So, the principle of orthogonality says the

following, very it is a geometric interpretation.

(Refer Slide Time: 19:28)

So, think of a three dimensional plane with x y z, x in the in the horizontal direction and

y and z, and the point a that is in the three dimensional space and it has got coordinates

in x y and z. Now we here is the principle of a orthogonality, now I would like to find an

approximation to a, but an approximation that lies in the xy plane. So, xy plane; if you

were to think of it as of in the following manner, that the approximation a hat will be

alpha times the unit vector in the x direction U x, plus beta times the unit vector in the y

direction. So, if these are my unit vectors alpha and beta are scalar.

So, basically I am trying to find a approximation to this three dimensional vector, but in a

two dimensional space. So, the question that arises is which would be the best possible

approximation to a in the two dimensional space, in the two dimensional space I have

represented it as a hat. So, in a most students of geometry would immediately point out,

that point of closest approach which would be the error between the vector that you are

trying to approximate and our approximation would be that which lies perpendicularly

below it in the xy plane.

So, basically if we were to drop a perpendicular from a to the xy plane, and you take its

coordinates that would turn out to be the best approximation to that. So, basically this



point would become your alpha this would become your beta, and then you would get

the best possible approximation. I hope you are comfortable with the explanation a is a

point in three dimensional space I am trying to approximate it in the two dimensional

space in the xy plane and I find that the point that is perpendicularly below it is the one

that gives me the best approximation.

So, if you were now to where to think of the error between the original vector and the

approximation in the xy plane, and call it as e the vector e. So, basically a minus a hat is

the vector e or in other words a hat plus e would be equal to a which is the equation that

is given here. Now given this expression given the geometric interpretation, it is easy for

us to see the following result and this is a very very key observation. We find that the

vector  e is  perpendicular  to the vector a hat because it  is  perpendicular  to the plane

because a hat is perpendicularly below a in the in the xy plane.

Now, this is also means that you will be perpendicular to the components of a. So, U x

and U y are the components of the unit vectors and the error has to be orthogonal to the

to the components of a hat. In other words the error vector is orthogonal to the plane that

is represented by a hat. So, this is what we referred to as the principle of orthogonality,

the best possible approximation a hat is that which produces an error which is orthogonal

to  a  hat,  the  error  must  be  orthogonal  to  the  input  vector  that  with  which  is  the

approximations to the to the given vector.

So, given this understanding of the principle of orthogonality let it go back and rewrite

the principle of orthogonality. We are trying to find that solution that minimizes the mean

squared error and from the principle of orthogonality we also know the following, the

principle of orthogonality states that the error must be orthogonal to the vector. So, the

expected value of the error b minus A r this is the error and this will be orthogonal to the

input vector r. So, the orthogonality condition is given by error orthogonal to r and where

r is the can you think of r as the components of the best approximation and A r being the

best approximation of the received vector.

So, this is the principle of orthogonality and this must be equal to a 0 vector. So, this is a

principle. So, the minimization of the squared error can be translated or simplified as a

condition, which is given by the principle of orthogonality. So, now, the now that we

have this form we would now like to simplify it and see what is the result that we obtain



from this from this expression. So, the expansion of this expression would be expected

value of b times r Hermitian minus A times r Hermitian this has to be equal to 0.

Now, what we would like to do is a simplify it further and derive a expression for the

results that that would be helpful for us. So, we call this as equation 1, now we would

like to go ahead and expand it term by term. So, first let us take the first term in the

approximation in the expression the first time in the expression we let us say is expected

value of b times r hermitian.

(Refer Slide Time: 26:01)

Now, please write down or substitute the value for r, this would be expected value of b

times R b plus eta Hermitian and this would be equal to if you were to expand it,  it

would  be  equal  to  b  times  b  Hermitian  times  R Hermitian,  but  we know from the

property of the auto correlation matrix that R is a has satisfies the property that R is equal

to R Hermitian. So, we could equivalently write this as instead of R Hermitian we could

write it as R.

Now, the second term in this expression. So, this would be the first term, the second term

would  be  expected  value  of  b  times  eta  Hermitian.  Now  notice  that  one  of  these

components is the input vector which is a binary vector equally probable plus or minus

ones and the other one is the noise vector which again has got zero mean. So, the second

term can be ignored because the expected value will go to zero what we have is the first

term only.



So, even in the first term R is a constant matrix. So, what we are interested is in b b

Hermitian and when we look at the expressions for b and b Hermitian, if were to write it

down this is b 1 b 2 up to b k the number of users times b 1 b 2 up to b k notice that the

diagonal terms will give you b 1 squared b 2 squared all the way up to b k squared. So,

when you take the expected value; expected value of a plus 1 squared is equal to 1 minus

1 square is equal to 1. So, you get ones along the diagonal, but keep in mind that the

vector b itself actually incorporates the energies of the transmit signals.

So, it would actually be correct to call it as root E1 times b 1 root E2 times b 2 all the

way to root Ek times b k. So, this would be the correct expression. So, what we should

do is introduce the values root E 1 root E 2 root Ek as the and here again we would

introduce the root E 1 root E 2 and root Ek. So, that would b b hermitian.

So, when we look at the expected value this basically becomes a diagonal matrix where

it becomes diagonal value E 1 E 2 Ek of diagonal terms are a product of b 1 and b I and b

j both are independent and each of them is equally zero mean. So, therefore, the half

diagonal terms become 0. So, the this becomes the b b hermitian. So, this is expected

value of b b Hermitian is given in this form.

So, this equation now becomes expected value of b times r Hermitian is nothing, but if

you were to call this matrix has D. Where D is a diagonal matrix whose entries are E 1

through Ek then this becomes equal to D times R. So, the first express the term in the

expression is a D times R. So, this is equation two.

So, going back to the expression we are trying to write down a expression for a based on

the principle of orthogonality, the first time was b times r Hermitian, the second term was

a times r Hermitian we are trying to get expressions for both we have now completed

getting the expression for b times r Hermitian in terms of D times R.
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Now, let us move on to the next term in our expression the next term in the expression is

expected value of a times r r Hermitian. So, this would be expected value of A times

write down the expressions for R, the expressions for R is R times b plus eta, the second

term would be r times the plus eta R Hermitian. So, this again if were to expand this

product we would get 4 terms and what we would like to do is quickly look at what those

4 terms are.

So, the first term would be expected value of A times R times b b Hermitian times R. You

should get R Hermitian, but that would be same as R that would be the first term, the

second term will be there will be 2 terms which contain expressions for b or b hat. Now

expected value of this would be zero because the individual components are zero mean

and then the last time will be expression with the two noise terms it should be A times eta

eta hermitian. So, these are the expressions that we have.

So, if you were to take the value of expression expectation inside, we can show that this

becomes A times R times remember expected value of b b Hermitian, we got it to be

equal to D and then we got it the write down this as A as R Hermitian. Now if were to

write down the expression for expected value of eta eta hat. So, if you were to if you

write down the expressions for that, we have already shown that this is equal to expected

value of eta eta hat we have shown is equal to N naught times the N naught is a the noise



variance times the correlation matrix, where R stand represents the correlation between

the at different spreading sequences.

Now, if you were to write this down this would become plus A times N naught times R

and this is expected value of A times r r Hermitian this is right take this down as equation

3. So, equation 1 gave us the expression to go for based on the principle of orthogonality,

equation 2 gave us an expression for the first term equation three gives us an expression

for the second term.

So, if you now were to go back and substitute the values where d. So, then what we

would get is equation 1 can be equivalently written as D times R from equation 2 minus

A times R D R Hermitian minus A times N naught time R from the from equation 3 and

this has to be equal to 0 we are basically substituting in equation 1 from 2 and 3 that is

our basic operation which is what gives us this expression and we know also know that R

Hermitian is equal to R. So, we can simplify this.

So, now we write a we do this following do the following expression. So, think of the

following from where we write this as D times R minus A times R times D times R

because R Hermitian is equal to R minus A times N naught I am going to write D inverse

D basically that would be give me the identity matrix and basically substituting this D

inverse D into this between N naught and R multiply it by R equal to 0. Now you may

wonder can is it is D inverse does it exist yes it exist because D is a diagonal element

matrix with the energies E 1 E2.

So, it is basically diagonal matrix with non zero entries. So, therefore, the inverse exist.

So, there is no issue with writing D universe times D. So, now, notice that I can factor

out D times R from this expression. So, then it becomes I minus A times R minus A times

N naught D inverse times D times R equal to 0.

Now, from the situation we know that D is non zero R is non zero, R is the correlation

matrix  between  the  spreading  wave  forms.  So,  D and R cannot  be  0.  So,  from the

observations this term must be equal to 0, which basically tells us that I minus if you

factor out the A matrix R minus N naught D inverse, R plus naught D inverse sorry must

be equal to 0, which also tells us that A has to be equal to basically if you take the one

term to the other side A it has to be equal to R plus N naught D inverse.



Then in other words A times R plus N naught D inverse z has to be equal to identity

matrix.  So,  therefore,  a  has to be the inverse of  that  matrix.  So,  this  is  a  very very

important result. Now we started off by saying that MMSE solution, will give us an up

estimate of the transmitted vector where b is equal to b hat is equal to A times r and the

steps that we were doing is actually to find out the expression for the matrix a, which

will  give  us  the  best  possible  solution  b  hat  and  through  is  using  the  principle  of

orthogonality writing down expressions for each of the terms given by the principle of

orthogonality we have been able to derive the following expression.

Now what you would like to do is understand this expression a little bit more. So, the

MMSE receiver that we have derived so far has the following properties.

(Refer Slide Time: 38:01)

We say that b hat will be equal to A times r, and we wanted to minimize b minus b hat

magnitude squared expected value, and this resulted in us obtaining the matrix A in the

following manner which is R the correlation between the spreading waveforms plus N

naught that is the noise variance of each of the antennas multiplied by D inverse and the

whole inverse.

Now, what I would be very helpful for us is to look at two special cases, the first special

case that we would like to look at is. So, this is case one special case and we would like

to look at the case where the noise variance is small. So, in other words the additive

noise from each of the antennas the thermal noise is small compared to the other forms



of interference the multi user interface. So, N naught is small. So, if N naught is small

compared to the in the expression then the expression here can be approximated as R

plus N naught D because N naught is we ignore N naught D inverse. So, this becomes R

inverse notice that what this is telling us is the MMSE solution is the same as in this

particular case MMSE same as the decorrelation receiver.

Same as the decorrelation receiver  or order correlating receiver and it  is a very very

interesting result because we what did we say was the drawback of the decorrleating

receiver, the decorrelating receiver we said may result in a noise enhancement. Now if

the noise enhancement is noise itself is small or negligible to begin with then we can

ignore the effect of noise enhancement and say that the decorrelating receiver is the best

possible solution and that and the MMSE receiver more or less confirms that that is the

best way to do that.

Now, of course, we take the other extreme where the special case number two; special

case number two says that N naught is large. So, this is the case where the decorrelating

receiver will not do a good job because it will end up further magnifying the noise. Now

notice that if you were to have this expression N naught becomes large. So, therefore, we

between r and N naught d inverse the second term dominates. So, under this condition

we find that the expression for A can be written in the following manner it is given by E

1 by N naught, E 2 by N naught after D inverse inverse.

So, basically notice that there are two inverses given and finally, it is E k by N naught

notice what is this telling us remember our best estimate for the transmitted vector is b

equal to A times r. So, what the MMSE receiver is telling us is that when N naught is a

substantial when N naught is significant noise component is present, then the best that

we can do is make a decision directly on the output of the correlators directly on the

output of the. Because A is nothing, but A diagonal scale in matrix, it says b 1 based on

the output of r 1 b 2 based on the output of r 2 because any attempt to do the suppression

of the multi user interference ends up further degrading the noise and not giving us any

additional benefit.

So, basically this  is both the special  cases one where N naught is small and the one

where N naught is large both of us both of them give us a good explanation of why the

MMSE receiver works in both these environments. So, to summarize MMSE receiver is



one where we write down the expression, that you want the output or the decision to be a

linear combination of the output of the correlators and the expression for the matrix A is

given  by  the  following  expression,  and  this  is  the  MMSE  receiver  for  multi  user

detection. An the decision statistic itself is given by A times r where r is the output of the

k correlators.

So, we get a received correlators and we get a set of a received get a received signal

passes through the edge of the k correlators match filter to each of the case spreading

waveforms, you get the vectors r 1 through rk uppercase k you are able to pre compute

the matrix the matrix a do a times r and then do the decisions based on that. So, to go

back to the figure that we drew, so, CDMA multiuser detection it is a very vast problem

widely studied.

What we have try to do is to give a flavour for what are some of the aspects the first one

is the optimal solution requires you to do a exhaustive search of all combinations of the

transmitted vector. The sub optimal solution the one that we saw first was a decorrelating

receiver. A decorrelating receiver is one that computes the correlation matrix inverse of

the correlation matrix, and then makes a decision based on that. So, this would be R

inverse times r is the decision made by a decorrelating receiver.

On the other hand the MMSE receiver says we would it reduce the matrix r it also uses

the an estimate of the noise in the system. Noise times the D inverse, D representing a

diagonal element matrix with the energies of the different transmitted signals inverse. So,

notice that when N naught is large N naught is small it convergence to the decorrelating

receiver, and when N naught is large gives you a solution which is different from the

decorrelating the receiver and which turns out to be the best in. So, anything in between

where you do its somewhere which is neither the very in low noise or the very high noise

anything in between we find that the MMSE receiver is a good solution for us and we get

the decision statistic b hat to be equal to A times where a is given by this matrix. So, that

summarizes for us the CDMA multiuser detection and also concludes our discussion on

the corner on the chapter of CDMA.

I hope you will have a chance to read the corresponding text there the material both from

each of the books the coverage that is presented in each of the books adds a unique

flavor, definitely I would encourage you to read the corresponding chapters in reports



book also in Haykens book Molisch and in goldsmith. Each of those adds a different

perspective and of course, the multiuser detection part is very nicely covered in throw it

is. So, general CDMA the concepts of CDMA in from each of these books and the multi

user detection very specifically the decorrelating receiver the MMSE solution would the

best a good reference would be a Proakis digital communications.

So, I hope you will be able to give get a good understanding and confidence of that,

because CDMA is the backbone of our 3G systems and our 3.5G systems. So, whether

we are  talking  about  CDMA 2000 or  talking  about  wideband CDMA or  any of  the

enhancements  such as  HSPA these  are  all  based  on these  and  our  understanding  of

CDMA, and how we achieve capacity how does a base station do multiuser detection and

all of the benefits and the and the complexities of a CDMA system. So, that would be a

good summary of that.

Now, having completed the discussion on the multiuser detection, we would know like to

move into the next big aspect  of the wireless systems where we have the benefit  of

multiple  antennas both at  the transmitter  and receiver.  Now we find that  in the fifth

fourth generation and in the first generation as we presented in the introduction the use of

multiple antennas has become a very significant and a very prominent feature, and that is

something that we want to gain a very good understanding of from the point of view of

the course.
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So, with that  in mind we would now like to look at  the formulation of the multiple

antenna  environment.  So,  multiple  antennas  at  the  multiple  antennas  and transmitter

receiver which it is been characterized in terms of there are Nt transmit antennas. So, Nt

antennas at the transmit and transmitter and correspondingly we have Nr antennas at the

receiver. So, Nr receiver antennas.

Now, there is no assumption being made us to which is a smaller or larger Nt can be

greater than Nr it can be less than Nr or can be equal to Nr. All three combinations are

possible and we will mention the various scenarios that are likely to happen. So, in the

most general framework what we find is that we can look at the transmit side as a set of

Nt  transmitters,  which  is  transmitting  to  a  set  of  Nr  received  antennas.  Now for  a

moment take the case where you just have one received antenna.

If you have only one received antenna what you will find is the transmitted signal from

antenna one which goes on the first branch, let us call this gain as h 11. So, I would like

to call this particular gain as h 11. So, that is at the signal gain from at received antenna 1

from transmit antenna 1, similarly if you look at the. So, the receive antenna 1 from

transmit antenna 2 call it as h 12 and h 1 comma N t. So, basically there are three keep in

mind we are looking at the case where there is only one receive antenna.

So, we get three different signals that are received by antenna one each of them having a

complex gain denoted by h11, h 12, h 1 comma Nt. Now if you were to write down the

from the  other  side  from let  us  consider  only  one  transmit  antenna  and  Nr  receive

antennas.

So, the first antenna transmits its picked up by antenna one that would be h11, now the

signal picked up by the antenna N r would be h times Nr comma 1. So, that would be the

h the receive. So, like that each of those receive antennas would be picking up antenna

from the signal from antenna 1. So, this is a important framework of characterization. So,

when we have the general  case of Nt antennas at  the transmitter  Nr antennas at  the

receiver.

Then we can write the write the expression for the MIMO system in the following way.
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So, if you were to write down the output of the at the receive antennas y 1 of n, which is

the first receive antenna this would be h11 of n times x of n x 1 of n the first transmit

signal from the first transmit antenna, then h 12 from the h 12 of n n basically shows that

these are all time varying quantities the channel can be a time varying quantity.

So, h 12 of n times x 2 of n plus dot dot dot h 1 comma N t of n times x of N t of n.

Notice that this would be the expression for the signal received by antenna 1 and as in all

of  the  communication  systems  each  antenna  adds  the  presence  of  thermal  noise  is

reflected by a noise component which is given by n 1 of n. So, if you were to capture this

in matrix form it would be y 1 of n, y 2 of n dot dot dot y N r of n notice the index is a Nr

because there are Nr receive antennas.

So, this would be Nr cross one vector, the vector in the middle the channel a matrix

would be h11 of n h 12 of n, all the way to h 1 comma Nt of n, the last term will be h Nr

comma 1 of n h N r comma two of n dot dot dot last term will be h Nr comma Nt of n

and this multiplied by the signal transmitted by each of the transmit antennas that would

be x 1 of x 1 of n, x 2 of n all the way to x Nt of n and each of the receive antennas has

its noise component represented by n 1 of n, n 2 of n all the way to n Nr of n.

Let us quickly write down the dimensionalities of each of the vectors the transfer matrix

is Nr cross Nt the transmit vector has got Nt components. So, this is Nt cross 1 and the

last the noise sources is Nr cross one notice that it will be dimensionally consistent and



we can write it in the following form, y is equal to h times x plus n in compact form. So,

this is the problem or the formulation of a MIMO system there are Nt transmit antennas

each of them transmitting a signal Nr received antennas picking up the transmissions

from each of the Nt transmitters and of course, the noise terms being added in each of the

receive antennas.

So, in a compact form we can write it as y is equal to h x plus n. So, the MIMO problem

statement is that, we are given the observation y; given the vector y we assume that the

channel matrix is known H. The task before us is to estimate x that is the MIMO problem

statement and that is something that we will pick up in the next lecture and build on. So,

that we can get a good understanding of how MIMO systems work, and what are the

advantages and the benefits of using MIMO in a wireless system, and very specifically in

a cellular type environment.

Thank you very much. 


