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BER in fading, Equal Gain Combining

Good morning.  We begin  with  the  summary  of  lecture  33,  but  let  me give  you the

highlights  of  lecture  34.  We  are  going  to  look  at  the  mathematical  and  statistical

characterization  of  maximal  ratio  combining.  We will  find  that  the  requirements  for

MRC are quite stringent in order to be able to achieve the benefits. So, as always is there

a tradeoff that achieves most of what MRC achieves, but without the complexity of MRC

there is a version called the equal gain combining; which we will talk about that.

(Refer Slide Time: 00:46)

So,  that  will  give  us  3  methods  of  diversity  combining  one  is  selection,  optimum

maximal ratio combining and something in the middle which is equal gain combining.

Then we will look at some examples of the BER calculations in the presence of diversity

and the different kinds of diversity and what are the ways in which we would get the

benefit of that.

I would now then having come to that point of understanding how received diversity is

giving us a huge benefit. Then we asked a question what happens if the mobile is does



not is not capable of having receiver diversity. Then comes the whole notion of transmit

diversity yesterday we talked about one example of transmit diversity, but in 1998 there

was a very famous in discovery called the Altamonte code which said that you could get

very good performance from transmit diversity and we would like to study that. And of

course, methods like Altamonte code needs to need to know what the channel is.

So, which means that there should be a feedback channel and will talk a little bit about

that that sets the stage for us to understand wireless channels with feedback because,

once the transmitter  knows what is the channel conditions then you can optimize the

transmission according to the channel condition. Lecture 33 summary.

(Refer Slide Time: 02:09)

The key high lights from lecture 33. I thought that it would be better for us to write it

down from scratch rather than reuse the formula because gives us a chance to go over

this information.

So, this notion of antenna being weak or strong, weak or strong has to do with the gain of

the antenna is related to the gain of the antenna. And gain affects SNR, SNR, affects

SNR affects SNR it does not affect C over I, does not affect C over I because, both the

desired signal and the interfering signal pass to the same antenna does not affect C over

I. So, that is our, then once have the understanding that we have some number of equally

strong antennas we can perform the simplest of the diversity schemes, selection diversity

you can call it selection combining usually call it selection combining.



And yesterday the there is these are the results that we have shown or derived in the last

class the CDF of the SNR under selection combining gamma sc of gamma this is the

same as the probability that all the M antennas gamma 1 through gamma M is less than

or equal to gamma, that is the CDF the this is given by 1 minus e power minus gamma

by gamma raise to the power M.

So,  the  probability  that  each  of  those  antennas  is  below  the  below  some  threshold

gamma. And then differentiating we got the PDF. So, this is the CDF the PDF was by

differentiation and that gave us the following result FSC of gamma is M by gamma e

power minus gamma by gamma 1 minus e power minus gamma by gamma raise to the

power M minus 1. And I hope most of these results are a you would had a chance to look

at them and possibly verify.

We also showed a result, we showed it for the special case of M equal to 3, but expected

value of gamma selection combining is given by gamma times 1 plus 1 half plus 1 third

that is the result that we have. After selection combining we went on to talk about the co

phasing, co phasing was to estimate the phase of the channel gain and then compensate

for that. So, r of t was e power minus j phi 1 r 1 of t plus e power minus j phi 2 r 2 of t.

And we showed that in this case the SNR 2 was approximately 1.8 times SNR 1 that is if

you have only a single antenna and you have 2 antennas which you were doing co-

phasing you got most of the benefit ok.

The final  one which  on which  we spent  the last  part  of  the  lecture  was on optimal

combining. What is the best that you can do if you are not constraint by complexity? The

optimal says that I am I can I am allowed to combine all of the available signals of t is

summation K equal to 1 through n G K r K of t. And we showed that the upper bound for

gamma optimal is less than or equal to summation gamma K, K equal to 1 through M.

This was also shown and we showed that a particular choice of g K, G K being equal to

Z K conjugate divided by the noise variance on that particular branch n K whole square

the first n says it is noise K is the Kth antenna that is and under this assumption we get

the  maximal  ratio  combining which is  equal  to  summation  K equal  to  1 through M

gamma k. So, maximal  ratio combining is  the best  that we can do in the context of

antenna diversity ok.



So, that is a quick summary of all the points that we had discussed, I again probably

more mathematics than what we have seen in the other lectures, but I hope the none of it

was difficult you could have you can easily verify the result.

(Refer Slide Time: 07:39)

So,  let  us  continue  today’s  lecture  by  making  a  few  observations  about  MRC.  So,

observations about MRC, what are the things that I need to know for MRC? And what is

it that makes it a difficult or complex for us to do? So, what is intuitive is the choice of G

K g K has to be proportional to Z K conjugate this is from the co phasing aspect of it. For

co phasing we need only the argument, but you know if once you take Z K conjugate you

will get the negative of the angle as well.

And we also said that  when you have a particular  antenna which is  very noisy,  you

should not be giving it a lot of weight. And so therefore, this is proportional to 1 over

sigma n comma K square. So, that you do not get. So, that you down play the antennas

that have got a large noise variance. So, this way the good antennas get the a more of a

boost and the weaker antennas get suppressed accordingly.

So, basically this means reduced weightage for weak antennas, reduced weightage for

weak antennas.  So,  maximal  ratio  combining is  our optimal  method the  form of  the

weighting functions are intuitive one of them the numerator  does the co phasing the

denominator does the scaling based on whether the antenna is strong or weak, So for the

weak antenna. So, the important thing that we have to keep mind is that we need to have



we need estimates of Z K case and sigma n K case. We need this is something that we

need.  So,  given  that  this  is  Z  K case  is  channel  estimation,  but  sigma  n  K square

estimation is noise variance estimation.

So, which is a little bit more involved, but something that definitely can be done with the

signal processing tools that are available to us; the other aspect that we want to may be

observe  is  that  when all  of  the  antennas  or  of  equal  strength,  if  you have  all  equal

strength antennas that when you say equal strength I equal average SNR equal strength

antennas  then  the  result  gamma MRC bar  average  value,  will  be  equal  to  M times

gamma, right gamma bar.

So, or may be consistent with our notation gamma MRC is equal to M times gamma. So,

your gamma MRC will grow linearly as the number of antennas. So, it does not decrease

it keeps increasing as the numbers of antennas grow. So, there is a linear increase which

is very good because; that means, by adding more antennas I am going to get better

performance. So, linear increase with M that is that is a very useful result, and possibly

an observation that we have made once before, but may be worth making again since

gamma MRC is equal to summation K equal to 1 2 M gamma K.

The instantaneous SNR is the sum of the SNRs this even if all gamma K case are below

threshold  even  if  gamma  K less  than  gamma  threshold  for  all  values  of  K,  all  the

antennas are you know in a fade it is possible that gamma MRC is greater than gamma

threshold or in other words if you have added enough number of weak antennas you can

still make a or a reasonable detection of the signal that is that is being transmitted.

So, again that  is  another  useful result  which says that  we can get the benefit  of the

antennas in a in a very effective manner. I would like to move on 2 understanding the

statistical  characterization  of  MRC. If  you have  your  notes  with  you please refer  to

lecture number 22 when we talked about the moment generating functions.
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We did actually talk about maximal ratio combining. Statistical characterization, that was

the first time we said there is something called optimal combining and gamma MRC will

be equal to the sum of the SNRs and we showed how the moment generating function

can be used to get the moment generating the expressions for the a PDF of the SNR. But

today’s thing is actually we excuse me revisiting it, So that we can we can develop it. So,

statistical  characterization  please  refer  lecture  22  when we talked  about  the  moment

generating functions also lecture 23, lecture 23 this material some of it you will see was

found there. 

So, gamma the moment generating function psi of gamma K of s in Rayleigh fading was

given by 1 minus s gamma. And we said that the gamma MRC is equal to gamma 1 plus

gamma 2 plus gamma M at that time when we did it we did not have proof, but now we

have the proof of this. So, the moment generating function of gamma MRC of s which is

nothing, but the expected value of e power s times gamma MRC. Please substitute once

and show that this comes out to be because, each of these are independent it comes out to

be K is equal to 1 through M psi gamma K of s. And if all of them have got a similar

average SNR it comes out to be 1 minus, 1 minus gamma s raise to the power M sorry, it

is upper case M ok.

So now, how do I get the PDF of gamma MRC inverse Laplace transform? Now I am not

sure if inverse Laplace transform of this function is easy may be you know some close



form expressions, but there are; obviously, many ways to solve a particular problem. I

would like to take slightly different root. If you go back and look at the expression that

we have for gamma K, gamma K we said is a basically is equal to v square this is equal

to x square plus  y square.  This  is  the background basically,  there  is  a  real  part  and

imaginary part I have taken the magnitude square and that becomes the that is that is

what is related to the SNR. So, this we said was a chi square distribution chi square

distribution because. X and y are 0 mean this is actually central chi square we 2 degrees

of freedom M is equal to 2 degrees of freedom alright.

So, now if I want to right down for MRC it is still a central chi square central chi square,

but now I have done gamma 1 plus gamma 2 up to gamma M. So, instead of 2 degrees of

freedom  I  have  2  M degrees  of  freedom.  So,  it  is  a  central  chi  square  chi  square

distribution with 2 M degrees of freedom dof and Proakis gives you the expression for

the PDF of M. So, refer Proakis digital communications chapter 2 for the PDF, for the

PDF of central chi square of this variable.

And please do verify that the following result is something that you obtain you have to

basically make sure that you use the correct variables and others f of gamma MRC of

gamma is equal to gamma power M minus 1 e power minus gamma by gamma divided

by gamma power  M,  M minus  1  factorial  where  gamma greater  than  or  equal  to  0

expected value of gamma MRC the chi square random variable with 2 M degrees of

freedom is given by M times gamma. Where gamma is the of is the average expected

value of the random variable with 2 degrees of freedom. This can also be written as 2

times, 2 times sigma square that is the M into 2 times sigma square into E s by n not.

So, if the average SNR gamma average SNR gamma is given by E s by N not and the

variance of the chi square random variable is 2 sigma square, we assume 2 sigma square

equal to 1 in the general case, but if you wanted to capture the presence of the 2 sigma

square that is that is quite alright. So, this is the expression for gamma and this is the. So,

this is what you would be able to verify from the Proakis ok.

Now, what I would like to do is ask you to verify that this is indeed the. So, basely this 2

must be related correct these 2 must be related. So, if I take the Laplace transform of one

I should get to the other.
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So, verification I will just pose the problem request you to complete the verification. So,

the verification is that I would like to take the f gamma MRC of gamma, this is gamma

power M minus 1 e power minus gamma by gamma raise to the power M, M minus 1

factorial.

Compute  the  moment  generating  function.  I  know  the  moment  generating  function

already, but I am I am going to go through the process of computing it. Phi of gamma

MRC of s this is integral  0 through infinity,  the definition the PDF times e power s

gamma d gamma. So, this can be written as integral 0 through infinity let me just a skip a

step.

Please do verify that what you will get here is basically pull out all the substitute from

equation one you will  get gamma power M, M minus 1 factorial  the not part  of the

integral integration, with in the integral is 0 to infinity gamma power M minus 1 e power

minus 1 over gamma minus s gamma d gamma. Again I have just regroup the terms.

Couple of results that you are already familiar  with this is a exponential  term where

gamma goes to infinity.

So, this will become very large unless what is within the bracket is positive basically it is

a negative exponent. So, therefore, it will decrease start decreasing. So, one the real part

of 1 over gamma minus s must be greater than 0 or the same as saying real part of s must

be less than 1 over gamma. And we have shown that this is this is earlier also we have



come in to this scenario when we are computing moment generating functions. So, it is

not a new result, but basically this is what we have.

Now, there is a standard result which I am not sure if we have already mentioned it, but

if not you can just not it down. Integral 0 to infinity x power n e power minus a x d x is

equal to n factorial divided by a power n plus 1. When real part of a is greater than 0 and

n is an integer. Which is exactly ours our situation, please substitute this result and verify

that phi psi of gamma MRC of s that is the moment generating function comes out to be

1 minus 1 minus gamma s raise to the power M. So verified. So, of course, you could

have done the inverse Laplace transform, again it turns out that the forward transform is

easier for us to for us to verify all of this is useful only if we can apply it.

(Refer Slide Time: 22:24)

So,  let  us  get  to  the  task  of  applying  it.  So,  I  would  now look  like  to  look  at  the

probability  of  error.  So,  what  is  the  impact  that  diversity  has  had  in  terms  of  the

probability of error? That is an important result for us to capture and to make sure that

we are very, very comfortable with it

So, probability of BER of DBPSK, I choose DBPSK because it is easy for us to do the

integration, but I will show you that you can do it equally well for the BPSK as well

comma MRC. Let us take the best performance and see what we get. So, this would be

integral 0 through infinity the probability of a probability of expression for a DBPSK is e

power minus gamma, that is the probability of for a given gamma what is the probability



of bit error rate. Then multiply it by the PDF of the SNR gamma raise to the power M

minus 1 divided by gamma power M, M minus 1 factorial e power minus gamma by

gamma d gamma ok.

Again pull out the terms that are not part of the integration 2 times gamma power M, M

minus 1 factorial, what is within the bracket integral 0 through infinity gamma power M

minus 1 e power minus 1 plus 1 by gamma d gamma sorry, d gamma is not there, it is the

same formulate that we use last time. This is straight forward for us to apply it in this

case please verify that this gives us, 1 by 2 into 1 plus 1 plus gamma raise to the power

M. Which is at high SNRs can be approximated as 1 by 2 gamma raise to the power M,

previous it was 1 over 2 gamma.

Now we have it with as 1 over 2 gamma raise to the power M and that is diversity the

benefit. That is why the graph is going down with the difference slope. So, if this was the

graph for M equal to 1 it is going to go with the different slope this is M equal to 1, M

equal to 2 and M equal to 3 the slopes are going to change. So, that is the diversity

benefit ok.

Now, we also said for DBPSK, we actually do not need to do the integration. How do we

do BER calculation without doing the integration? Take the moment generating function

and substitute. So, just verify that verify that we can estimate the BER probability of

error of DBPSK for MRC can also be obtained from psi gamma MRC of s you replace s

with minus 1. So, this actually go back and get the expression for the moment generating

function it comes out to be 1 half there is a 1 half outside. So, 1 half 1 by 1 plus gamma

raise to the power M.

So, do it the integration to just for verification just. So, that we are comfortable with the

benefit the benefit of it, but of course, the short cut method would be to use the moment

generating function. Everyone is comfortable with what has been mentioned so far? So,

what  have we said so far,  there  is  selection  combining we optimal  is  maximal  ratio

combining we have developed the PDF of maximal ratio combining we has also shown

what is the moment generating function for maximal ratio combining and shown that you

can use that for computing the probability of bit errors, ok.
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Here is a example that I believe you will find very useful in terms of reinforcing the

concepts that we have talked about. So, let us assume that there are situation where there

are 3 antennas, 3 antennas gamma 1 means the average SNR of the first antenna is 15 db,

strong antenna. Gamma 2 equal to gamma 3 is equal to phi dB reasonably strong, but

compare to gamma 1 antenna one these are definitely the weaker antennas. So, if I had

only one antenna.

So, basically if only antenna one was present probability of error of DBPSK this would

have been 1 half of 1 minus s gamma 1 I should substitute with s equal to minus 1 that

would have been 1 half of 1 plus gamma 1. This if you verify basically convert 15 dB to

linear scale and then do the conversation this comes out to be 0.015 that is the bit error

rate that you would expect in fading with an average antenna of average SNR of 15 db.

Not a very good performance even though this is the. 

Now, if you were to combine it with the other 2 antennas probability of error of DBPSK

with MRC. Now how do we do that? Because these are antennas with different SNRs,

but no problem gamma MRC is gamma 1 plus gamma 2 plus gamma 3. So, moment

generating function will be the product of the moment generating functions. So, this is

going to be 1 half of 1 by 1 plus gamma 1, 1 over 1 plus gamma 2, 1 over 1 plus gamma

3 or I can write this as 1 plus 1 over gamma 2 whole square because those 2 are of the



same value. And go head and substitute and you can verify that this is actually 8.9 into

10 power minus 4.

And the difference there were 2 weak antennas right, one strong antenna, but that itself

did not give you very outstanding performance,  but  MRC even though it  was  being

combined with weak antennas actually improved it by order of magnitude and therefore,

we start to see the improvement even with weak antennas; so improvement even with

weak antennas because of the power of MRC, even with weak antennas weak antennas.

That is important point for you to keep in mind and always keep sure that you are. One

of the things that  we said as the benefit  of the moment generating function was the

following  we said  that  once  you have  PDF and  you  know it  is  moment  generating

function then it is easy for us to develop the bit error rate expressions.

So, I am going to look at a case where I have a combination of an antenna that is seeing

Nakagami  M fading and another  antenna that  is  seeing Rician  in  fading.  2  different

antennas and I want you to get a feel for which is bad which is better? You given a

choice between Nakagami M and Rician which would you take first of all you will ask

for the M value. If it is M equal to 1 no difference both are the same or you know. So,

that is the thing, but first with Nakagami M fading. 
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I think we gave a result which I believe which we, I am I am not sure if we actually

derived it, but I thought it would be good for us to at least as an exercise for you to drive

that.

So, under Nakagami M fading the SNR is expression is given this is given by M by

omega raise to the power M gamma power M minus 1 divided by gamma of M e power

minus gamma M divided by omega. Now there is a little bit of confusing notation this is

a gamma function not SNR; so gamma function. So, if M is an integer than we can we

can get rid of the gamma function because for integers gamma of M is equal to M minus

1 factorial  if  M is  integer.  So,  we will  look at  the case  where  M is  an integer.  So,

therefore, we can we can simplify that. And we to avoid confusion we used this notation

omega is equal to expected value of v square if this gamma function is removed we can

replace it with our gamma which is the standard form.

So, once you have this you can please verify that f gamma of gamma is given by M raise

to the power M divided by M minus 1 factorial gamma power M minus 1 divided by

gamma power M e power minus M gamma by gamma. I think we gave the Nakagamim

fading in 2 forms one with the envelop given the expression in the form of the envelop.

So, if it is in the form of f v of v, how do we go to f gamma of gamma? Basically take

random variable v is w is equal to v square do the transformation and then make sure that

you are able to get the result. So, please go through that transformation of variables to

make sure that we are getting this.

So, now to get the expression for the Nakagami M: the moment generating function f

gamma of s this is integral 0 to infinity f gamma of gamma e power s gamma d gamma.

Now substitute  and verify that  you get  something of  this  form for  the  third  time in

today’s lecture it  is a form that you will  recognize immediately M minus 1 factorial

gamma raise to the power M integral 0 to infinity gamma power M minus 1 e power

minus gamma M by gamma minus s d gamma. Again it is in the form of a standard

integral which you can verify and this comes out to be 1 by 1 minus gamma s divided by

M raise to the power M.

So, this is the moment generating function of an antenna with Nakagami M fading. And

it is useful for us because the example that we are going to be looking at has one antenna



which is got Nakagami M fading. Everybody is with this result? Let me just move on to

the example, example there is 2 antennas I want to do optimal combining.

(Refer Slide Time: 34:49)

So, it is 2 branch maximal ratio combining first branch has Nakagami M fading, has

Nakagami M fading, fading with M equal to 4. So, it is milder than Rayleigh gamma 1

equal  to  12  dB SNR M equal  to  4.  And  the  second branch  second  branch  has  got

Rayleigh fading Rayleigh fading with gamma 2 equal to 12 db. Now how much worse is

the Rayleigh fading compare to the Nakagami M? Let us look at it.

So, the for the maximal ratio combining psi of gamma MRC for the 2 branch MRC is

given by the product of the moment generating functions for the Nakagami M antenna it

is 1 minus gamma 1 s divided by M raise to the power M, for the r Rayleigh function

Rayleigh fading 1 minus s gamma 2. And probability of error of DBPSK with the 2

branch MRC. Basically you will substitute s equal to minus 1, this comes out to be 1 half

divided by 1 plus gamma 1 by 4 raise to the power 4 and this one is 1 over 1 plus gamma

1, because both are 12 dB ok.

If you just do the numerical calculation it helps us to sort of get a feel for it; the first

antenna error the contribution to the error 0.0016. The Rayleigh fading is  0.059. So,

clearly the Rayleigh fading is the one that is has poorer performance, but because you

have been able to combine it with another antenna which is got better performance, the

net result you can verify is 4.87 into 10 power minus 5. So, I think it is, it is it is very



powerful to see the benefit is of diversity and just to see how much you can gain just by

combining antennas and seeing the benefit is that we can get. Any questions? Ok.

So,  now  I  would  like  to  move  on  to  answer  another  important  question.  Is  there

something that  I  can do which is  not  as complex as MRC? So, here is  the problem

statement.

(Refer Slide Time: 37:54)

The problem statement says that we have MRC which is the optimal it requires us to

compute  the  channel  coefficient  Z  K  take  Z  K  conjugate,  compute  the  SNR noise

variance for each antenna for each of the K M antennas. And again one observation you

can multiply this by some constant C it does not affect it because the co phasing and the

waiting all of it. So, the C is it does not matter, but. So, to within a constant the scale the

MRC coefficients  are  unique.  So,  what  we need is,  we need to  estimate  the z  case,

estimating the z case also you need to estimate sigma square n comma K for K equal to 1

through M. That is where the complexity arises ok.

Now, if we do not want to estimate the noise. Of course, the z case we will we will have

to estimate, but let us say I do not want to estimate this, I do not want to estimate this.

So, what do you do? Assume that the noise variances are the same. So, well what else

can you do? You do not want to compute noise variances you want to. So, you assume.

So, we will let us see; what is it that we can give.



So, G K is equal to sum constant times Z K conjugate. And let us assume that we are

going to do co phasing because,  we did see that co phasing actually  did fairly good

performance. So, we will do Z K conjugate divided by mod Z K, because that that will

basically tell you that this is equal to C times e power minus j argument of Z K. So,

which means basically some constant C times the negative the conjugate of the angle ok.

So, let us say that this is our scheme we are trying to do co phasing r optimum of t is

equal to summation K equal to 1 through M G K r K of t. And the these terms do not

affect  the  noise  variance  because  it  is  just  a  complex  rotation  this  is  these  are  unit

vectors. So therefore, the signal component I want to compute the SNR, SNR the signal

component. Signal component says that you must take the expression for the g case and

then and then square it.

So, what you will get is C square times e is the Z K star will multiply with Z K you get Z

K magnitude square, but then there is a mod Z K at the denominator. So, what you will

get inside the bracket is summation mod Z K. And I have to and this will be the scaling

factor for the signal component. And this I will have to square, that is a signal component

this is different from the earlier case where we were getting mod Z K square inside the

summation. But now it is only mod Z K because of the way that we have written it ok.

So,  the  noise  component,  noise  component  can  also  be  obtained  as  follows.  It  will

summation K equal to 1 through M sigma M comma K square whatever was the original

noise component multiplied by mod Z K mod, mod one second, I will just make sure it

should be mod G K square; sorry, let me just get this correct. Mod G K square, but that

will be equal to C square that is all. So, what this comes out to be is C square times

summation K equal to 1 through M sigma n comma K whole square.

Now assuming that all of the antennas are equally or have the same noise variance, this

will be equal to M times C square times sigma n square. Assuming all have now all,

assuming same noise variance last step and some interesting results that that will come

out ok.
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So, now SNR will be the ratio of these 2 terms the C square term goes away what you

will get is E s by M sigma n square summation K equal 1 through n mod Z K whole

square. Now please note what is gamma K? Gamma K, gamma K is gamma K is mod Z

K whole square times E s by N not or E s by sigma n square I will just write it. So, that

we do not confuse by sigma n square. Now, I want incorporate the gamma case into this

expression.

So, this gamma combining that I have done, let me call it as opt bar it is not optimal it is

some sub optimal scheme, is equal to 1 over M summation K equal to 1 through M

square root of gamma K whole square. So, basically you take this E s by sigma n square

in to the in to this, in into the squares term and then what you will find is that you can

write it in the in the following form ok.

So, basically what we find is that this is the expression. So, let us not call it optimum

anymore what did we do we all the G Ks where some constant times Z K star divided by

mod Z K.  So,  basically  all  of  the  antennas  got  a  weighting  which  was  equal  to  1,

magnitude equal to 1. So, magnitude of G K equal to 1 for one for all K equal to c. So,

basically it is a, so his is why this particular method of combining instead of calling it co

phasing,  we call  it  equal gain combining. All of them have the same magnitude,  but

different phases just to do the co phasing. So, equal gain combining.



So, gamma EGC is equal to 1 over M summation K equal 1 through M square root of

gamma K whole square. And if you remember for the case that M equal to 2 we actually

did compute the expected value of gamma EGC for the co phasing, for the 2 branch co

phasing we showed that this is equal to gamma into 1 plus pi by 4. In molisch we have

the general result if I have M antennas expected value of E gamma EGC is given by

gamma into 1 plus M minus 1 pi by 4. And maybe it is a good exercise for you to verify

the  following  result  gamma MRC is  greater  than  gamma EGC greater  than  gamma

selection combining; the corresponding expressions summation gamma K. This is 1 over

M summation square root of gamma K whole square and the last one will be gamma into

1 plus 1 half plus 1 third dot, dot, dot ok.

So,  basically  this  is  the  final  result  that  we have  for  diversity  combining.  Selection

combining the simplest of the methods MRC the best equal gain combining which will

give you most of the benefit and is equal to the optimal combining if the SNR if the

noise variances are all the same. So, in the absence of it you make the assumption that all

the noise variances are the same and you will take a performance hit if they are not and

that that is when.

So usually, if you have all the noise variances to be the same MRC and EGC will be the

same. So, therefore, let us make it greater than or equal to because under some scenarios

these 2 will be very close and can also be actually equal to each other. So, hopefully you

get a good view of the diversity schemes the books by Goldsmith and Molisch are very

good  for  this  please  read  the  corresponding  chapters.  Chapter  7  in  Goldsmith  and

Molisch, I do not, I will put it up on in module.

So, we will end here and we will pick it from here and continue in the next class.

Thank you.


