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Good evening. We begin lecture 33. The flow of today’s lecture will be completion of

our  discussion  on  selection  diversity.  We  concluded  it  by  doing  the  mathematical

characterization. Antenna selection is one way of benefiting from multiple antennas. The

better or more enhanced ways of exploiting diversity would be to combine the signals. In

fact, we have made a statement without validation that the optimal combining should

give us the sum of the SNRS of each of the different antenna signals.

So, today’s lecture will validate or will prove that result. So, signal combining is the way

of exploiting diversity in a better manner, better than selection diversity and we will ask

the question what is the optimal combining that we can do.

(Refer Slide Time: 01:01)

In  the  diversity  literature,  the  optimal  combining  is  also  known  as  maximal  ratio

combining and then, again we will justify why it is optimal, why is it called maximal

ratio and then, at the end of it, we will look at some BER expressions which will be



using the mathematical characterizations,  but first we begin with the quick review of

lecture number 32.

Again if there are any questions, we will please do raise them. We will assume that 32

materials is comfortable to everyone.

(Refer Slide Time: 01:36)

So, the basic frame work is that we have one transmit antenna, multiple receive antennas

and the signal that is transmitted by the transmit antenna is picked up by the different

received antennas. So, we have shown a case of two examples i.e. the general case would

be N r antennas and selection diversity basically says you just give weightage of one to

one of the antennas and then, zero to the others and that is what this signal represents.
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So, selection diversity is really not combining. It is actually selecting, but in the different

antennas. The benefits of selection diversity we saw through two independently fading

antennas and giving the benefit of choosing the better of the two in every situation and

we can see that definitely we will do better than either of the two antennas individually,

and we showed that the cumulative distribution function can be expressed as a product of

the individual CDFs and in the case where all of them have identical statistics, it would

be raise to the power m is sort of start to see the benefit of the diversity factor.

Then, we went on to look at the effect of a weak antenna and then, showed that if you

have M antennas M minus one strong and one of them weak. It is effectively like having

M minus 1 antennas because the selection process will not pick up the weak antenna. It

will always favor the strong antenna, ok.
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Now, just one very quick input regarding the benefit  of selection diversity. The solid

lines that we showed here are the cumulative distribution functions which is what we

have shown in the last graph raise to the different powers of m and m being 1 2 and 3, 1

is no diversity, 2 and 3 are selection diversity and the solid lines are CDF functions. I

have drawn a dark blue line to indicate the minus 10dB. So, if your fade margin was 10

dB, last time we discussed it as 20 dB just as an illustration.

So, basically this normalized parameter gamma by upper case gamma less than minus

10dB says this is what it means. It is same as saying what is the likelihood of CDF lying

being less than or being in this range below 10dB or less and that is denoted by the

intercept on the y axis. So, for the case of one antenna, it is around 0.1 dB, sorry 0.1 is

the probability for two antennas. It is about 8 into 10 power minus 3 for 4 antennas. It is

not even there. Basically it is less than 10 to the power of minus 3. It is something 10 to

the power minus 4.

So, you can see that the benefits of the selection diversity already are quite substantial.

When you go from 1 to 2, you can see there is a huge gain that you get and then, you

start to see diminishing returns as you go to more number of antennas and that is what

we may we can just mention that the principle of diminishing returns as you increase

principle  of diminishing returns as M increases or as N r increases.  Yes, you do get

benefit, but increase in the performance becomes less.
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We said that there are two types of ways of exploiting selection diversity you can select

and then, do the processing and then, do the selection and both of these are valid. There

are  you know tradeoffs  which  we have  discussed  in  the  last  class  in  the  context  of

selection diversity. There are two special cases that we always want to keep aware of.

One is the weak antenna. What happens, what is the context of the weak antenna and the

second one is  what  happens when there is  a  correlated  antenna and again,  there  are

special scenarios where these antennas may still be of value to us, ok.

(Refer Slide Time: 06:09)



We ended the lecture by saying that in a noise limited environment if you had a weak

antenna, it would basically mean that the second antenna is not selected. You will always

be selecting the one that is  stronger.  However,  in the case of an interference limited

scenario, both the antennas are seeing approximately the same c over i. I thought that it

would be beneficial for us to revisit this result just so that we can start today’s lecture.

So, the key point is that selection diversity means picking the best of the antennas. Keep

in mind that in the context of a noise limited scenario, it is signal to noise ratio. In the

context of an interference limited scenario, it will be signal to interference ratio and the

fact that a signal is an antenna strong or weak, we just want to make sure that you are

comfortable with that.

(Refer Slide Time: 07:13)

So, a couple of points before we move into today’s lecture. So, here are some points may

be for you to think about and note down. So, what do we mean by a strong antenna?

What  is  the  notion  of,  what  is  your  understanding of  a  strong antenna?  The  strong

actually refers to a high gain. So, antenna a stronger than antenna b is a same as saying

the gain of antenna a is greater than gain.

So, basically this strong or strength that we are referring to is the gain of the antenna and

when we have a weak antenna, that means I have a antenna that does not have much

gain. What happens is, it has a limitation when it comes to the signal to noise ratio. We

will pick up little bit later, but basically in the context of selection diversity, this antenna



is not of much use. Selection diversity, this antenna will not be selected, basically the

weak antenna would be, but in the context of optimal, we will show that there is a benefit

that even the weak antenna will have some utilization for our purposes.

So, strong and weak both have same c over i. That means, if I can ignore the noise, then

the key point to keep in mind is that the notion of what is strong, what is weak and which

scenario is the one that we are talking about. Before we go into today’s lecture, I would

like you to think about couple of questions. This is just to think about diversity in its

entirety before we start focusing a little bit more.

So, are everyone familiar with that? What is ARQ?

Student: Automatic Multi Request.

Is that a form of diversity? Answer is yes, it is a form of time diversity, but it has some

constraint. So, if you have a transmitter and you have a receiver, so the transmitter sends

the packet, sends packet does not receive or did not get it. So, again retransmit and this

time the ack was received. Again this is very simplest form of ARQ.

Now, notice that the information was sent to times, it was sent with some spacing in time

and hopefully that was more than the coherence time and therefore, this is a valid form of

diversity. It is a form of diversity that requires feedback. So, it is a form of diversity that

requires  feedback and again that  is  a very powerful  set  of scenarios  when you have

feedback going from the receiver to the transmitter and we will study more about these

feedback channels.

So, this is just keep in mind that you know they were talking about a very broad concept

and this is one of those second questions. Again very different in terms of nature what

are the two things that we look for in antenna diversity? One is that it would have high

gain that would make it a strong antenna that is number 1. Second is uncorrelated with

other antennas because even if it had high gain, if it ended up being correlated with the

other antennas, it is not of much benefit uncorrelated with the other antennas. Those are

two things that you would want for diversity benefit.

Now, what are the ways in which you get uncorrelatedness? One of them is by spatial

separation that means distance. So, spatial separation you would need at least lambda by



2. Again this is for lower wavelength. This is little difficult for a handset. Of course, on a

base station you can do it reasonably. Well, if you cannot do spatial separation, what are

the ways do you get? You just said no way, nowhere I can get diversity on a mobile. Is

there any other way that you can get diversity, anything that you are familiar with?

Student: Polarization.

Little louder. Polarization? Yes, polarization is a way of getting. So, you can have two

antennas. One of them is vertically polarized and the other one is horizontally polarized.

Vertical  and  horizontal  or  you  can  have  right  circular  polarization,  left  circular

polarization and there are theories to show that your vertical polarization signal and the

horizontal  polarization  signal  are  uncorrelated  with  each  other.  Similarly,  the  right

circular and left circular depending upon how you have transmitted your signal and your

environment, you could be using circularly polarized antennas and those would also give

you uncorrelated.

So, again something for you to think about  in  the broad context  of diversity  having

understood this element, I would now like to spend a few minutes on notation and in the

last class, we wrote this down, but we probably went a little bit fast. I just want to repeat

that.

(Refer Slide Time: 12:50)



So, the matric that we are often looking at is C over N plus I and C over N plus I can be

nicely written as divide numerator and denominator by C. It becomes I by C. Before you

wonder why I did this becomes C by N inverse plus C by I inverse, ok.

So, this is a nice way to visualize that. So, if we say that we are interference limited, that

means the noise power is much less than the interference power which means that C over

N is much larger than C over I because I is much larger. This would also mean that C

over N inverse is much less than C over I inverse. So, that means the dominant term, this

is the dominant term and therefore, C over N plus I is approximately C over I. Of course,

you could have said that because n is much less than I, I am going to ignore I, but this is

a nice way to visualize saying we always talk in terms of carrier to nose ratio. We do not

talk about just, we do not measure the noise power or the interference power separately.

So, therefore, this is a good way for us to visualize that.

So, suppose I have two antennas. Now, the signal on with antennas gains G1 and G2.

Now, what does G1 does? What does G1 influence? It influences mod Z1 square, right.

What you transmitted is a same power, right. There is nothing that does not affect. So,

what you eventually picked up what the channel coefficient and if your gain was higher

that mod Z1 square is going to occur, so mod Z1 square is proportional to G1 mod Z2

square is proportional to G2, ok.

Now, carrier to noise of antenna 1 can be given by mod Z1 square by sigma N square

into Es. Whatever was your signal power what you transmitted mod Z1 square is the gain

because of the channel and sigma N square is the noise power. Again that is something

that we do not have any control over. So, similarly C over N for antenna 2 is mod Z2

square divided by sigma N square Es and now, if I am told that G1 is much stronger than

G2, now you can see why C over N 1, C over N for antenna 1 is going to be much larger

than C over N for antenna 2. That is why antenna 1 will keep getting picked most of the

time, ok.
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So, these is the noise limited scenario and again extend it  to the interference limited

scenario. The mod Z1 square is proportional to G1. Now, C over I for antenna 1, this is

proportional to the signal that is from the desired signal and the interfering signal. So,

basically mod Z1 square affects the desired signal Es. The interfering signal I1 mod Z2,

sorry mod Z1 square again affects that also. So, basically the ratio of the two is what

removes the dependence on the gain and likewise, you can see that for C over I for

antenna 2 is also equal to E s by I 1. It should be the interfering signal power of the

interfering signals. So, it is no I 1, I 2. So, it is only I. This is also going to be S over I,

ok.

So, that is why even if G1 is much stronger than G2, you may still have some benefit in

interference in the context of addressing the interference issue.

Student: Sir.

Yeah.

Student:  Fundamentally  the  antenna  should  see  different  signals,  right?  Why are  we

considering the powers to be the same?

I am sorry, I did not get the question.



Student: Sir antenna 1 antenna 2 are supposed to see different signals. So, how are we

considering the powers to be the same?

Good question. The question is what is the model underlying? Model let us clarify that.

So, r 1 of t is Z1 times s of t plus some interfering interference coefficient. Let us call it

as I 1 times I of t plus eta 1 of t, right. So, the second signal r 2 of t is z 2 s of t plus I 2 is

that  a  coefficient  times  I  of  t  plus  eta  2  of  t.  Now,  since  we  are  talking  about  an

interference limited scenario, I am just going to ignore the noise for the moment.

So, now the question that you are asking is, it is the same signal that is transmitted, then

what different is how much of it ended up in my receiver and that is dependent on the

gain that I will see and that in turn will will determine what Z1 is and gain of antenna 2

will determine what Z2 is. So, the same antenna is what is picking up the interference

signal also. So, therefore, how much of the interference I pick up also depends on the

antenna gain.

So, basically what we can say is Z1 is proportional to mod Z1 is proportional to square

root  of  G1.  It  is  one  is  the  amplitude;  other  one  is  power  So,  similarly  I1  is  also

proportional to root G1. So, when I take mod Z square by I1 square, the G 1 goes off and

likewise for G2, but here the question what you have raised is actually valid because if

you take C over N plus I, there is no scenario where you can completely omit the noise.

If the gain is very weak, the noise starts to become the dominant factor.

So, even in such scenarios, weak antenna is slightly worse than the stronger antenna. So,

it is not fair to say that you know it is exactly the same, but all the important thing to note

is that this factor is something that we should not miss out because noise is not affected

by the gain, but both signal and interference are affected by the gain of the antenna and

therefore, we have to take that into account in our consideration; very good. Any other

questions?
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If there are not, then we will spend a few minutes on the statistical characterization of

selection  diversity  and  I  believe  you  will  find  this  very  interesting  and  also,  lot  of

intuition can be obtained from this result and like before in this mathematical derivation,

there I will skip a few steps, but I hope you will fill it in and make sure that you are

comfortable with the result. We start with the fundamental result of a selection diversity

that  is  the  probability  of  fade or  probability.  The cumulative  distribution  function  is

derived is defined as gamma 1 gamma 2 gamma M. I have M antennas and all of them

less than or equal to some threshold and assume we are going to make the assumption

that there are m antennas and all of them are identical. Identical means they have equal

statistics,  equal  average  SNR which  is  denoted  by  gamma  average.  SNR is  always

denoted upper case. So, this is expression that we have already derived. We will just

write it down 1 minus e power minus gamma threshold by gamma raise to the power m.

This is the cumulative distribution function and we will call it as the CDF of gamma

subscript Sc, that is for selection diversity and the value is gamma threshold. So, this is

the expression that we have.

Now, individual SNRS are obtained or can be written down as gamma case is equal to

mod z k magnitude square Es by N naught. So, basically there is a signal to noise ratio

that is when that would be the signal to noise ratio, in the absence of any fading and

because fading is present, the instantaneous SNR is modified, is obtained as mods at k



square times E s by N naught. Now, from the cumulative distribution function from this

is equation 1.

From 1, I would like to get PDF of gamma SC. Instead of writing at gamma threshold, I

will just write it as gamma which basically says I have to differentiate the CDF with

respect  to  gamma.  So,  please  do  that.  It  is  just  one  step  in  the  difference  process

differentiation.  So, the exponent I get 1 M into 1 minus e power gamma divided by

gamma raise to the power M minus 1; then,  the second term which will  be minus e

power minus gamma by gamma into minus 1 by gamma, ok.

So, combine them and you will get M by gamma e power minus gamma by gamma 1

minus e power gamma by gamma raise to the power M minus 1. So, actually we have

obtained PDF or the probability distribution function. Now, you may say what is the use

of PDF. Wait a minute. One of things that I would very much like to understand is what

is the average SNR of selection diversity? So, one of the things that I would be very

interested to know is e power gamma SC on average is selection diversity is going to

give me benefit and how much of an advantage is it going to give me over the other

antennas.

So, the first thing we would immediately like to calculate is expected value and expected

value is integral 0 to infinity gamma f gamma Sc of gamma d gamma, right. So, you can

substitute from equation 2 into the expression that will give us 0 to infinity gamma m by

gamma e power minus gamma by gamma 1 minus m minus 1 d gamma 1 substitution

and then, we will be able to work with the result. The substitution that we will use is let

gamma by gamma be equal to y. I am sure you can do the substitution. You can please

verify that this integral now becomes m gamma times 0 to infinity y e power minus y 1

minus e power minus y raise to the power m minus 1 d y.

Again just mix it a little simpler because we need to do some algebra with this. So, this is

the general case and one of the non-trivial cases is m equal to 3. So, we will take m equal

to 3 as a special case and see for insight because it is always good to get insight first.
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So, if I substitute M equal to 3 in the previous equation, expected value of gamma SC3

that 3 stands for 3 antennas. M equal to 3 is equal to 3 times gamma integral 0 to infinity

y into that is a square term 1 minus 2 e power minus y plus e power minus 2 y into e

power minus y d y. So, basically you can multiply out that term and you will basically

get like integrand with three terms.

Now, there is always all you perfectly at liberty to use standard results. Very convenient

standard result is available to us. The standard result says integral 0 to infinity x e power

minus m x d x is 1 by m square and that will make life much easier because notice that

each of the three terms is of this form. So, the answer now is 3 times gamma 1 minus 2

by 2 square plus 1 by 3 square, that is 3 gamma 1 minus one-half plus 1 by 9, that is

equal to gamma 1 plus one-half plus 1 by 3.

Now, you may ask what is inside the bracket. Here can be interpreted in many ways.

Why did  you interpret  it  like  this  not  for  convenience  because  in  general  case,  the

integral  is  actually  much harder  for us  to  do,  but basically  you would have to  do a

binomial expansion of the term with the exponent and then, use the standard result and

what you will get for the general case is expected value of gamma selection combining is

equal to gamma times summation I equal 1 over M 1 divided by i, ok.

So, if it is two antennas m equal to 2, it is gamma into 1 plus half m equal to 3. It is

gamma is equal to 1 plus one-half plus one-third m equal to 4. You can expand it very



interesting result, very satisfying result which says that yes I do get a benefit, but the

benefit is reducing as the number of antennas increases, but you know it has made the

assumption that the antennas are equally strong. If the antennas are not equally strong,

you know you can only, this result is applicable only in that context, ok.

So, again once you have the standard result, I am sure you will able to do that. So, let me

just give you the task derived for the general case and in moodle, we will give you the

hints because I believe it is not straight forward. Even after trying the special case for m

equal to 3, you will find that there are certain substitutions that you will need. So, derive

for the general case gamma Sc for M antennas, but the important thing is to know the

result and appreciate that if they have certain benefits, ok.

We move on. So, what have we said so far about selection diversity is, selection diversity

is  very  easy  to  do  pick  the  strong  antenna  and  you  will  get  benefit  in  terms  of

overcoming the fades. It is definitely better than a single antenna. How much benefit you

get we were not sure, but we have now been able to quantify saying that the average

SNR is actually going to be if you have two antennas, it  is going to be 1.5 times on

average antenna and SNR of a single antenna and if you have a third antenna and fourth

antenna, you are going to see corresponding benefits and I think this is good enough

understanding of the benefits of selection diversity.

So, now we move into other more deeper assessment of the asked problem on the study

of diversity and of course, students always are curious. So, the question raised or the

question posed before us is what happens if I just added the two antennas? Why do you

take so much of trouble finding out which is the better SNR and what if I added the two,

would I have not get the same benefit? Just add 2 r 1 plus r 2, what do you get? You get z

1 plus z 2, right. So, you if one is in a fade, the other one will pick you up. Your answer

is that question is clear. The answer is I have r 1 which is z 1 times s 1 r 2 is z 2 times s 2.

Just add the two signals. No problem, right. When one is in a fade, the other one will

come up. So, you get a benefit.

So, to answer that question and answer it in a correct manner, let us take a look at the

correct way of addressing that particular problem. So, it is actually a very interesting

problem. It is a very important problem. So, we will make sure that we address it very

carefully, ok.



(Refer Slide Time: 31:35)

So, the question that we have before us is signal combining, that means you are going to

do something and add or combine the two signals in the simplest form. You just add the

two  together.  So,  the  framework  same as  before  I  have  one  transmit  to  receive  the

channel gain to antenna 1 is z 1 to antenna 2 is z 2. This is the transmit side, this is the

received side, so that we are complete r 1 of t. The received signal is z 1 times s of t plus

eta 1 of t r 2 of t is z 2 times s of t plus eta 2 of t. What can you tell me about eta 1 and

eta 2? Both are samples of AWGN which are uncorrelated because they are coming from

two different  antennas,  experiencing two different  you know noise environments,  but

they  are  just  sampling  a  random  process  with  the  same  variance.  So,  they  are

uncorrelated with each other, but they have the same variance, ok.

So, now the question is what if I did r of t is equal to r 1 of t plus r 2 of t looks like a

good way to do it because what comes out is z 1 plus z 2 times s of t plus eta 1 of t plus

eta 2 t. Now, that itself should give you a little bit of warning signal. You added the noise

terms that mean you have twice the noise. You should have at least gained twice in the

signal to noise ratio, otherwise you actually have you lose SNR. So, it is always you have

to be careful. So, of course, we do not want to make a guess. So, if I were to call this as a

random variable z, now tell me the statistics of z expected value of z. Expected value of z

is 0, ok.



Now, if you have z 1 and z 2 Gaussian and you add them together, what do you get z as z

n is also z is also Gaussian. So, z is also Gaussian, ok and we know that z 1 and z 2 are

independent of each other. So, if I was interested in expected value of mod z 1 plus z 2

whole square, the modulus square, this would be expected value of mod z 1 square plus

expected value of mod z 2 square and that would be 4 sigma square, each of them where

2 sigma square, but now you have got something with us slightly larger variance, ok.

Now, let us go back and answer it from a statistical view point. You have a new channel

coefficient  which  is  z  which  is  zero  mean and the  real  and the  imaginary  parts  are

Gaussian. Forget the variance. What is its envelop?

Student: Rayleigh.

Rayleigh did you gain anything? No, the level crossing rate everything is going to be

more or less the same. Now, you said oh wait a minute. I gained may be something in the

numerator, right because I did z 1 plus z 2. So, let us see if we actually gained something.

So, SNR 1 if I had only one antenna, what would it have been? It would have been 2

sigma square times E s signal divided sigma N square, right. 2 sigma square is the mod z

1 square expected value of mod z 1 square. So, SNR 2 is 2 sigma square by sigma n

square e s. Again SNR of the combined signal new is what? It is 4 sigma square times E

s, energy of the transmitted signal, but have two noise terms. So, you have to add 2 times

sigma n square in the denominator which is the same as SNR1. On average your SNR is

also not any different. You did not gain anything by this process. So, therefore, it is as

good as waste of time. So, your BER is not going to change. All of it is going to be pretty

much where you were, ok.

So, little bit disappointed because we thought it was a good idea, but you know let us see

if there is a better way and the answer turns out to be is that yes, there is much better way

and how do we work on that and obtain the results that is associated with that. So, here is

a way that we would like to do it.
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So, here is the proposed signal. We are going to call it cophasing and the answer and the

reason for that name will become apparent in a minute. So, r of t is equal to e power

minus phi 1 of phi 1 times r 1 of t plus e power minus j phi 2 r 2 of t, where z 1 is equal

to alpha 1 e power j phi 1 and z 2 equal to alpha 2 e power minus j phi 2. Those are the

complex coefficients.

So, what did you do? You did a counter rotation of the received signal. For the first

antenna, the channel gave it a rotation of phi 1. You gave it minus phi 1 in the receiver n

f. Correspondingly you do that. So, basically now if you write down the expression, what

do you get is alpha 1 plus alpha 2. They are already cophase because alpha 1 and alpha 2

are real valued into s of t, yes like before I do have two noise terms eta 1 of t e power

minus j phi 1 plus eta 2 of t e power minus j phi 2. It is a very important observation.

This is nothing, but a phase rotation of the nose sample. The noise sample is a complex

sample you just need a phase rotation.

So, this is nothing, but a phase rotation of the noise sample, right. So, that means, the

power is not affected power in the noise is not affected. You just basically rotate it. You

take real square plus magnitude imaginary square, you will still get the same value. The

power  is  not  affected.  You  did  not  affect  the  noise,  but  you  did  something  very

advantageous to the signal. So, let us see if we can assess what the benefit that you have

obtained is. So, what is the average SNR? Average SNR says expected value of alpha 1



plus alpha 2 whole square into E s divided by I have two noise sources. So, therefore, I

have to write 2 sigma n square correct.

So, this can be written as expected value of alpha 1 square plus alpha 2 square plus 2

alpha 1 alpha 2 e s divided by 2 sigma n square. Couple of results that we already know I

just want to write it down, so that it will be easy to get to the final answer. Expected

value of alpha 1 square is 2 sigma square. This is same as expected value of alpha 2

square. What is the expected value of alpha 1? Do not say 0. It is equal to sigma root pi

over 2. So, please substitute into this result. So, you should get 2 sigma square plus 2

sigma square plus sigma square pi divided by 2 sigma n square. So, if we were to rewrite

it with just a simple level of manipulation, do not forget E s in the numerator. It should

be 2 times sigma square E s divided by sigma N square. That would be SNR of one

antenna into 1 plus pi divided by 4 which is approximately 1.7 times E s by N naught

whatever was if you call this as Es by N naught, ok.

So, the important thing to note is that when I just added the two, I did not gain anything

in terms of SNR, but when I just did the phase rotation, it seems like to have gotten a

huge benefit. So, almost 1.8 times the antenna SNR of single antenna. So, cophasing is

much better than selection diversity cophasing. I will just write greater than just stands

for better cophasing is greater than SNR of single antenna. It is also better than SNR of

selection diversity. We have just shown that a selection diversity m equal to 2, but what

is the price that you had to pay for this? What is it you have to do? You must know phi 1

very accurately because if you did not know phi 1, what will happen is, you will rotate

basically  what  are you doing,  you are taking the received signal  one rotating it  in a

particular direction, so that it does not have any the signal along the real axis, right.

Basically you have taken out complex rotation part and likewise you took the second

also. So, that is why they got aligned on the real axis, but if you did not do that, they will

still have some angle. Then, you will lose some of the the benefit that you would get.

Does it affect the noise? No. It is just another rotation. It does not matter, noise does not

get affected, but your signal gain will get affected.

So, the accurate estimation of the phis is going to make a very important difference. So,

let us quickly write down what are some of the differences that you would see between

the two of those selections versus.
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Selection versus cophasing, this is easy to implement. You just have to pick one of the

two antennas. You do not have to measure. Of course, you have to measure the SNR of

the two antennas, but you do not have to get the complex channel gain; one thing that is

little difficult in fast fading because the antennas will keep switching with the one that is

better fast fading, ok.

So, because the antennas will keep switching and it is hard to keep track of that. How is

it implemented? The antenna selection typically is you measure, then you select, right.

You have to pick the two and then, you detect, measure, select, detect. So, obviously

there has to be a time for you to measure even if you say that you know I am going to my

selection is going to be almost instantaneous, the minute I measure I am going to do that,

but still you have to do the measurement and you have a reliable measure of which one is

the stronger antenna. So, there is a time when you have not done measurement of either

antenna 1 or antenna 2, you are still deciding. Of course, after some period of time, you

will repeat the process again. You will do measure, select and then, detect again.

So, the important point is, this is not suitable for continuous transmission. If you have to

detect  continuously,  then  when  do  you  do  the  measurement.  So,  suitable  selection

diversity is not suitable if you have to detect continuously for continuous transmission

reception. So, again those are some, but on the other hand cophasing it requires accurate

estimate of e power j phi 1 and e power j phi 2. In other words, this is the same as saying



z 1 and z 2. The way you would do it is, you would estimate z 1 and z 2 and take the

phase of that.

The  good  news  is  that  it  is  effective  in  all  scenarios,  even  if  you  have  continuous

transmission, not a problem. You have to keep tracking it, you have to estimate it, but

effective  in  all  scenarios.  So,  of  course  it  has  got  slightly  better  performance  than

selection diversity to begin with. So, this is a good result for us to keep in mind. Any

questions on what we said so far? So, as always we ask the question yes, it is good that

we know that it is better than selection exist cophasing, but we want to know what is the

optimal, what is the best that we can do in this environment.
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So, we will now address the question of optimal combining and the result will come out

to be, it will be such a intuitively satisfying result that you know the whole thing about

diversity is sort of starts to really become fascinating. So, here is the problem statement.

So,  optimal  combining  we  have  m antennas  and  I  am allowed  to  apply  a  complex

rotation to each of the antennas as antenna signals. So, k equal to 1 through M. G k is not

gain. It is a complex rotation. If it is confusing with the gain term, please replace it with

some c k or d k, something else which does not have any other ambiguous notation. I

apologize because I did not think of the gain part r k of t.

So, g k is a complex number and you are allowed to choose it to be anything. The r case

are given to be r k of t is a single tap which means it is a non-frequency selective fading



or frequency flat fading channel z k times s of t plus eta k of t. That is your received

signal. The instantaneous SNR gamma k is given by mod z k square E s by noise in the

nth antenna. Again that depends on the gain or you know it depends on the electronics.

So, it could be that the antennas on the different antennas,  the noise on the different

antennas can be different. I mean if it is connected to low noise electronics in its receiver,

it could be different.

So, this is the most general case. Normally we would have said it is all the noise terms

are the same,  but in  this  we are even allowing provision for the noise power of the

antenna to be different. So, if it is different than it will be the instantaneous noise would

be given by this. So, the problem statement is find the optimum set of G k, the set of G k,

where  k equal  to  1 through m,  such that  the  resultant  SNR of  the  combined  signal

resultant SNR is maximized. So, I have to pose it as a problem of estimating the SNR

and then, I have to apply the process of maximization and then, show what is the choice

of G k that will achieve that maximum that we are interested in, and it turns out that is

actually a much simpler than what it sounds. So, let us write it down. It is just a two step

answer, but let us just formulate it carefully.

So, r of t if I substitute the result, the expression k equal to 1 through m g k z k s of t plus

g k eta k of t. Do not forget the g k on the noise term as well. By now we have computed

SNR enough number of times. So, I am going to trust to help me compute the SNR for

this expression. There is the signal part, there is the noise part. Help me. So, the signal

part if I take it will be magnitude summation k equal to 1. It will be like a one complex

coefficient  representing that  summation  k equal  to  1 through m g k z  k magnitudes

square times e s.

That will be the signal component every one with that basically the complex gain, that is

multiplying the signal. You take the magnitude square of it in this time. In this case it

happens to be that it is not one term, it is several terms that are adding together to give

you that complex gain noise. It is easier for us to compute because there are uncorrelated

sources. So, therefore, you just have to take the variances of each of those.

So, the denominator will be summation k equal to 1 through M mod G k square sigma n,

k whole square. I just want to make sure that everyone is comfortable with this. Basically

we have written down expression, where you think of it like this. Think of it as some z



prime times s of t plus some G k times eta k of t plus the summation of the terms would

be g 1 eta 1 of t plus G 2 eta 2 of t plus G n eta m of t. So, basically I am taking mod z

dash square times Es as my numerator and the variances of the denominator is all the

other  terms. So, basically  that  is  what  is  happening here and here.  Again some very

useful results from vector algebra will help us in the process of you do nott even have to

do the differentiation. So, we have a result known as the Cauchy Schwartz in equality.
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Cauchy  Schwartz  inequality,  it  turns  out  to  be  very  useful  for  us.  In  this  particular

context,  Cauchy  Schwartz  in  equality  says  that  if  x  and y  are  complex  vectors,  are

complex valued vectors, then the following result is valid. The inner product of x dot y

inner product of two vectors means you take the transponse conjugates of 1 and then, the

other  one.  So,  basically  inner  product  is  a  scalar  value.  So,  you  take  x  transpose

conjugate times y and then, you will get the inner product.

So, the inner product is of the magnitude square is less than or equal to the inner product

of x times the inner product of y. So, if you were to rewrite this, this is basically saying x

1 star y 1 plus x 2 star y 2 plus dot dot dot the number of vectors that you have the

magnitude square of that is less than or equal to magnitude x 1 square plus magnitude x 2

square dot dot dot magnitude y 1 square plus magnitude y 2 square dot dot dot. So,

basically this is the Cauchy Schwartz inequality.



Now,  I  would  like  to  use  the  Cauchy  Schwartz  inequality  to  the  numerator.  The

numerator is summation k equal to 1 through m g k z k magnitude square. Notice that it

looks very similar to the expressions that we have or very similar to form that we are

interested in, but I will do it with the slight manipulation that will help us in the final

result. So, I am going to multiply and divide by the same quantity. So, it is not going to

change the expression, but it will help us summation k equal to 1 through m g k sigma n,

k. I am going to multiply by sigma n, k. I am going to divide z k by sigma n, k. So,

actually I did not do anything, but just re-did this and then, magnitude square.

So, this is the left hand side of the Cauchy Schwartz inequality. So, this is always less

than or equal to the inner product of those vectors by themselves, so the inner product of

the first vector. For me vector number 1 is corresponding to this one. This is vector 1;

this is vector 2; the term corresponding to vector 1 summation k equal to 1 through m

mod g k sigma n, k magnitude square correct.

The second inner product comes out to be summation. I will just use a different variable

for the summation l is equal to 1 through m mod z l square divided by sigma n k. Well, I

need to take the modulus over the whole thing z z l by sigma n, l magnitude whole

square may seem like may be not very clear as to where we are even heading with the

whole, but probably just in one step, we can explain this term sigma is a real valued

number. So, I do not need to keep it inside the modulus.

So, this can be rewritten as summation k equal to 1 through m mod G k whole square

sigma n, k whole square. Am I right? The reason for doing it is the same term is in the

denominator.  So, that will  cancel  of the term in the denominator  and what is left  on

second term, this is summation. I will go back to the k as my variable k is equal to 1

through m z k magnitude square by sigma n, k whole square, ok.

So, my gamma mrc or gamma optimal, I will not even call it MRC yet gamma optimal

which is what I am trying to achieve or through this combination process is less than or

equal to the signal power. The gain term on the numerator, cancel the gain term on the

denominator  and what is  left  is  summation k equal  to q through m z z k magnitude

square divided by sigma n, k whole square. What is the definition of gamma k? Gamma

k is mod z k whole square e s divided by sigma n, k whole square.



So, by that this right hand side is nothing, but summation k equal to 1 through m gamma

k. So, the result is that if I try to do optimal combining by allowing each of the gain

terms to be complex, the best that I can do is the sum of SNRS and of course, if I can

find a choice of G k that will achieve this sum of SNRS then. So, gamma opt is less than

or equal to sum of SNRS is what we have shown.

Now, let me just give you the following as a task for you to do, but it is very important

that you actually try that.
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Suppose you choose the following gk is  equal  to  z k star divided sigma n,  k whole

square. Even before we substitute and see it along the lines of cophasing is this along the

lines of cophasing. Yes because when you have z k star, what will it do is, it will rotate in

the correct direction, but here you do not take only the phase, you are taking the complex

gain also into account and not only that, we seem to be taking the noise variance also

into account, ok.

So, again we have to come back to justify what is  it  that we are doing . So,  if  you

substitute this in the expression, then what you will please I would like you to verify is

that  the  gamma  optimal  if  you,  but  you  will  have  to  go  back  and  recompute  the

expression, but basically what we will find is the following gamma optimum is given by

E s times summation k equal to 1 through m z k magnitude square by sigma n, k whole

square, where this mod z k come from because z k conjugate multiplied by z k and then,



I have to add all of them, all the different ones together and then, square that to get the

gain of the signal component. Then, I have also affected to the noise component by the

same G k. So, I have to take their variances into account.

So, basically this would be summation k equal to 1 through m z k magnitude square. I

would get sigma power sigma n k power 4 in the denominator multiplied by sigma n

square, but you can simplify it to get sigma n, k whole square. You would have to check

it, but please do that. It is just one step of substituting this G k in the earlier expression to

get it.

So, basically you have to substitute this one, where 1 is given by this expression. So,

please substitute G k as given by that expression and verify what happens. Now, this

term denominator will cancel one of the terms in the exponent. So, what you get is e s

times summation mod z k whole square divided by sigma n, k whole square k is equal to

1 through m. This is equal to gamma 1 plus gamma 2 plus gamma m. So, we have found

a waiting term waiting coefficience, set of coefficience that will achieve the upper bound

for the optimal combining.

So, this is a form of optimal combining upper bound. It achieves the upper bound. So,

this is very useful result. This particular form of diversity combining optimal, it achieves

the SNR bound that the sum of the the resultant SNR. So, this is equal to gamma MRC

and  MRC  stands  for  Maximal  Ratio  Combining.  It  is  the  best  form  of  diversity

combining that we know maximal  ratio combining because it achieves the maximum

SNR benefit  for us. Why is it called maximal ratio combining? What is the intuition

behind it? First notice that this is the cophasing part, ok.

Now, supposing you had two antennas. Suppose I had just two antennas and you did e

power minus j phi 1 times r 1 of t plus e power minus j phi 2 r 2 of t. Suppose this is

what you were doing in the cophasing, but I told you that SNR of antenna 1 is much

larger than SNR of antenna 2. So, what have you ended up doing? You have taken this

one all had a low noise to component to begin with because it had only eta 1. What do

you do? You took and add to eta 2 which was much worse than eta and you actually

could end up hurting the SNR of antenna 1 because of this scenario, ok.

So,  cophasing  like  this  when  the  two  SNRS  are  very  different  is  not  a  good  idea.

Obviously, that would not be the optimum way of combining. So, what is the optimum



combining tell you that if the SNR or if the noise variance is very large on a particular

antenna, you have to give it lower weightage. You can cophase it no problem, but you

have to give it lower weightage. How do you do that? By dividing by sigma n square

because  if  your  noise  variance  is  large  on  a  particular  antenna,  notice  that  g  k will

become small.

So, if sigma n, k is large g k will go down which is the right thing to do. You took

cophasing, but you do weighted cophasing. So, that is why it is called maximal ratio

combining. You combine it with the certain ratio and that ratio is dependent on the SNRS

or it depends on the noise variances. 

So, last question to close todays lecture for cophasing, I needed to compute the phases.

What do I need to do for maximal ratio combining? I need to do channel estimation

which means z 1 and z alpha 1 e power j phi 1 alpha 2. That is all.

I need to estimate the noise variances. So, that is a non-trivial task, but if you are willing

to put in the effort to do the noise variances, then you will get the optimal combining or

you can make the assumption saying well all the noise variances are the same in which

case what should you have done in the cophasing, what could you have done in the

cophasing.

You could have done z 1 star r 1 of t plus z 2 star r 2 of t is. That correct that would have

been. That is pretty much because you assume sigma n 1 and sigma n 2 are the same.
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So, basically then that brings me to my last figure for today. If I cannot do diversity in

the receiver, I do something called transmit diversity and I will stop with this. So, the

transmit diversity scheme says I will now put the diversity component at the transmit

side, ok.

So, now we have to be a little bit careful, so that we make the, obviously, there is a

channel gain from here. This is z1. Let me call  this as z 2, but in order to be a fair

comparison, I have to transmit the same total power. That means, I must transmit power

p by 2 from here, p by 2 from here and the way to do that p 1 by 2 is to make sure that I

do 1 by root 2 here, 1 by root 2 here correct. That is only then it is a fair comparison

because this should be the same as what I do in the case.

So, I have divided my power into p by 2 p by 2. I am transmitting from these antennas.

So, what will I get at the receiver r of t will be z 1 plus z 2 times s of t, right. How many

noise terms?

Student: 1.

One noise term because there is only one antenna at the receiver, right. Now, you may

say well you know what actually I have done better than you know a diversity combining

at the receiver. No, wait a minute. There is a 1 by 1 by root 2 sitting in the front which

will scale the advantage that you got by having only one noise term actually went away,



but more importantly what did you do, you did z 1 plus z 2 which is going to give you no

advantage at all. So, what should you have done? So, what we should have done is 1 by 2

z 1 star 1 by 2 z 2 star and then, transited it. Then, you would get optimal combining at

the receiver and this would be a very good mechanism except that you need a feedback

channel which tells the transmitter what z 1 and z 2 are, ok.

So, if you have feedback from receiver to the transmitter, then you can actually move the

diversity part on to the transmit side and get some additional benefit or basically get the

same benefit. So, if you say that my receiver is low complexity, simple receiver can do

something at the base station side, yes provided you give me feedback. Think about it.

We will build on this in the next lecture.

Thank you.


