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WSSUS - Characterization of Time Dispersives Fading Channels

Good morning we begin lecture 27 with a quick summary of lecture number 26; in the

last class we have been studying the wide sense stationary uncorrelated scattering model

we build on that to understand the tau dimension in today’s lecture, but a quick summary

of what we have discussed in the last class the characterization of the time variation the

temporal variation. So, that we said could be added in terms of two more parameters

which we saw in the last lecture that was the level crossing rate temporal characterization

temporal refers to the time domain or the time variation.

(Refer Slide Time: 00:52)

This is the level crossing rate LCR denoted by N v or n V T h basically a threshold where

you declared  that  be the fade threshold.  So,  V T h is  your  threshold for fade if  the

envelop goes below that then you declare the signal to be in a fade. So, that is the and

this was the what we derived in the last class was the number of basically the way of

counting the fades and the average duration of a fade. So, what would be the units of N

V.



Student: Page per second.

Page per second I think almost said it; basically it is a probability multiplies by the time

if you take the time to be this one second then you get the fades per second ok.

(Refer Slide Time: 01:51)

Now this then after this we when moved on to the wide sense stationary uncorrelated

scattering model, once again reminding ourselves of the model that we have this is the

tau dimension this is the time dimension we are looking at the we are already studied

what the time variation looks like on each of the dimensions. Now we moved over to

understanding what happens in the delay dimension the tau dimension.



(Refer Slide Time: 02:14)

So, the argument that was made was that the interacting objects which create the multi

path component at tau 1 are different from that which creates a tau 2. So, therefore, that

the  there  is  no  correlation  between  them.  So,  therefore,  the  expression  for  the

autocorrelation  where I  have t  comma tau 1 h star,  h of t  plus delta  t  comma tau 2

basically boils down to the autocorrelation that we have when we had only a single tap

delta times tau 1 minus tau 2.

So, basically there is no correlation across the different delays, but at a given delay you

get the Bessel auto correlation function. So, this was the understanding of the why it is

called the wide sense stationary uncorrelated scattering. Wide sense stationary in the time

dimension uncorrelated in the tau tau dimension. So, basically what we said was if I now

set delta t to be equal to 0 that gives us a unique or a very interesting perspective because

then we now have what is present in the in the tau dimension, and this was what we this

is where we stopped in the last lecture and we were trying to say that we this would

correspond to the following; there was a little bit of confusion as to how did you get R h

of tau. So, I will explain that in the following example.



(Refer Slide Time: 03:57)

So, let us look at an example may be that will be the best way to answer or clarify any

doubts that will that have arisen because of that. So, here is a time varying channel h of t

comma tau that is given by summation n is equal to one through l Z n of t delta of tau

minus tau n. So, how would do you describe this channel? It is a l tap channel it is time

varying. So, L tap time varying with different delays each of the l taps have got different

delays. So, it is an L tap channel time varying I would not write that down it is obvious

from  the  and  if  we  are  also  told  that  the  zns;  zns  are  complex  Gaussian  complex

Gaussian that is complex Gaussian we can also make the assumption that 0 mean and

independent not necessary for our discussion.

But they could have different variances there is no assumption about a variances may be

we even state that different variances. So, in other words each of the Zns are complex

Gaussian random variables 0 mean to so, that they it. So, this can be then described as an

L tap Rayleigh channel. So, that is what it is and each of those taps are independent of

each other they may have different variances; that means, the power of each of those

different  L taps  may  be  of  different  values  that  is  what  is  a  given  by the  different

variances ok.

So, this is a very important model very often assumed and encountered in the study of

wireless channels, where you say that there are certain number of taps each of these are

independent  Rayleigh  channel  represent  independent  Rayleigh  channels  and  they  all



have different they may have different power levels. So, the example then goes on to say

that we will assume wide sense stationary uncorrelated scattering model, the task for us

is to determine the autocorrelation; determine the autocorrelation R h delta t comma tau.

So, a please write down the expression the autocorrelation is expected value of h of t

comma tau h star of t plus delta t comma tau, and substitute from equation one in this

expression  you  will  basically  get  a  double  summation  expected  value  of  the  first

summation n equal to 1 through L Z n of t delta of tau minus tau n and then I have to

change  I  will  change  the  independent  variable  to  k;  k  is  equal  to  1  through  l  Z  k

conjugate of t plus delta t delta of tau minus tau k. So, just basically substituted from the

earlier expression; notice that the quantities that will in come in to the expectation will be

of the form Z n of t Z k star of t plus delta t. 

So,  this  can  be  written  as  if  we  go  back  to  the  wide  sense  stationary  uncorrelated

scattering model, this will be expected value this this will be nonzero only if n is equal to

k. So, this can be written as expected value of mod Z n square delta of n minus k. So,

basically the double summation will collapse and what we will get is this expression. The

final  answer in  that  case the r  the autocorrelation  R h of delta  t  comma tau can be

expressed in the following fashion, it will be a summation it will consist of L terms each

of these if I denote by P n expected basically is the power of that particular tap. So, it

will correspond to P n and you will you will have the Bessel the autocorrelation as a

function of delta t wait a minute did I miss something here Z k, Z k conjugate I forget

Bessel function J 0 2 pi f D delta t ok.

So, this will be P n delta of tau minus tau n, j naught 2 pi f D times delta t. So, how

would we visualizes just a make sure that not missed anything tau minus tau n this is

only  a  nonzero  if  it  is  n  n  and  k  will  collapse.  So,  basically  you will  get  a  single

summation with the different delays yes ok.



(Refer Slide Time: 09:52)

So, how would we visualize this? This is the visualization that hopefully will help us in

understanding this corresponds to P 1, something corresponding to P 2, P 3, P 2, P 3 the

power levels. 

Now, the autocorrelation basically says that there is a Bessel function that that that is in

that  particular  axis  and there  is  another  Bessel  function  here there is  another  Bessel

function here. So, what did the, what did when they have there was only one tap what as

the interpretation? Basically you get the power of the tab and if you observe along the

time dimension you will see the autocorrelation as a Bessel function. Now what happens

if you have a wide sense stationary uncorrelated scattering and you have multiple tabs

these tabs do not interact with each other these tabs do not interact with each other that is

what the uncorrelated scattering part says, but at any given time you if you observe along

the time dimension there will be correlation of that particular tab with itself.

So, this is the interpretation of the autocorrelation when there is time dispersion and you

have assumed the wide sense stationary uncorrelated scattering model. So, now, under

this once if this example is clear what happens if I set delta t to be equal to 0? So, this is

basically  not  a  this  is  the  delta  t  dimension  right  it  is  now  that  is  what  we  are  a

representing this is the tau dimension that is delta t dimension in the delta t if I said delta

t to be equal to 0 I am basically saying look at it at the at a particular reference in in the

(Refer Time: 12:08). So, at this point what I get is I get component with power P 1 and



then at some this is tau 1 maybe I should not write P 1, P 2, P 3 here these should be at a

delay of tau 1, delay of tau 2, tau three like that there up to tau l there are. So, at tau 1

there is a signal with component with power level P 1, then at tau 2 component with

power level P 2, and then at tau three component with P level. 

So, this is what is the autocorrelation if I said delta t equal to 0 and this is precisely what

is obtained by saying if I take expected value or if I take R h of delta t comma tau if I set

delta t equal to 0 what I get is if you if you see with in the expression it is expected value

of h of t comma tau magnitudes square. So, it is like the power of the channel response

power at each point you at each value of tau. So, in other words if it was the discrete time

model you will get something like this, if it was a continuous model what you will see is

something where there is some variation.

So,  this  corresponds  to  basically  there  is  one  may  be  we will  just  try  to  draw this

particular itself if we were to if we were to look at in continuous time something very

low you see a strong component something very low and a smaller component and then a

stronger component. So, basically if you sample this you will get something that looks

like the impulses one this is in a continuously as a function of tau if you measure the

power levels. So, this is what we refer to in the last class as the power delay profile and

the name is descriptive of what it represents? Delay in one dimension power in the other

dimension and how would you do that you transmit very narrow pulse and then you

measure the pulses or the power that is received at different delays. So, the power delay

profile is what we obtain when we set delta t to be equal to 0 in the autocorrelation

function.

So,  yesterday  there  was  a  little  bit  of  confusion  saying  you know how do  you get

different values of tau because is not this supposed to be delta of tau because; that means,

there is no nothing that only at tau equal to 0 you will get something, but a basically what

it says is there is no correlation across these different delays, but within the delays there

is the time correlation, but if I am not interested in the time correlation I just want to look

at this at any given snapshot in time, what I am saying is a power distribution across the

across the tau dimension any questions. So, that was where we stopped in the last lecture

lets pick it up from there and. So, our starting point today is to take a look at the power

delay profile and then work with a power delay profile.
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So, power delay profile is a very useful characterization of a channel. In fact, that was

probably very widely used in even in static channels if you wanted to look at a how to

transmit information over telephone channel or a cable TV channel, the first thing that

you would do is to do channel sounding and see what is the response of the channel. So,

as we mentioned in the last class typically you transmit a pulse and then observe what

comes out at the other end, typically what you will see is that there will be a little bit of a

delay because the pulse has to traverse to the receiver and then you will see that there

will be some rise of the power that is where the bulk of the energy is coming, sort of

drops down then maybe there is one more pulse and then may be another third pulse and

then it dies down something like this is what you observe.

Now,  if  you  were  to  discretizes  it  may  look  like  there  is  a  strong  eco  or  the  first

component that arrives a second component a third component and again depends on

how you want to characterize it, and typically the way it is characterized is you say that

once the signal level falls below a certain threshold I am not interested in the that I think

I am assuming that the all the power has died down. So, there is some threshold below

which I am not interested anything above that is of interest. So, basically you want to

observe. So, one of the key things that we always what to measure is what is the first

when does the energy start arriving, and then till what time does the energy stay above

the threshold.



So, that is the amount of time the channel is going to respond to a single pulse. So, that is

what  is  going to  give  us  a  characterization  of  the  delay  dimension.  If  it  was  a  non

dispersive  channel  what  would  you expect  to  see  if  I  transmitted  a  pulse  I  will  see

another pulse that is it that is that is what you would see, but if it is for the dispersive

channel and a very complex dispersive channel like what we you have in wireless, you

will see that you know it is totally smeared there are multiple copies they are running one

into the other. So, now, in real life if I start transmitting pulses adjacent to each other that

is what you will do in transmission, you can see that you will have a lot of inter symbol

interfere. So, that is the, it is sort of leading us into understanding that, but for right now

we are not looking at the just trying to characterize the channel. So, therefore, that is

where there we are. 

So, the two characterizations of the power delay profile are the following the first one is

a  parametrization  which says what  is  the mean delay.  No I  will  explain to you in a

moment why mean delay is important, but before that the second one is the standard

deviation.  So, this is called tau bar tau is the delay tau bar is the mean delay of the

channel and then the RMS delay spread and we will see in a moment why these are

important characterizations and this is denoted by sigma tau sigma for RMS and a tau for

the basically sigma t tau square is variance and this is the r m s delay spread. 

Now, one of the reasons why these two are important is may be let me make you think

along the lines of digital communications; now we are switching our heads no longer

wireless this is digital communications. I have a channel which looks like this it has a

certain energied power in the channel the alpha one square plus alpha two square, there is

another channel which is of the same power level and that one has got two taps the total

powering both are the same.

Now,  from a  communications  perspective  what  is  the  difference  between  these  two

channels  second one has got strong inter symbol interference I  will  have to have an

equalizer to detect it  otherwise I will this one I may be able to get away without an

equalizer so, but in terms of the total power in the channel both are the same, but this one

is a more problematic. Now how do you reflect that and that is what we are trying to

characterize that there is a difference between the channel number one and channel two

and one of them is more severe then the other and how do we characterize that. 



So, the mean delay spread will define it for both the continuous power delay profile and

the discretized power delay profile says compute the mean value mean value is exactly

like how you would calculate the probabilities 0 through infinity tau, but instead of the

pdf we are now going to wait it by the power of that particular delay component. R h of

tau d tau we should normalize it. So, that is divided by integral 0 to infinity R h of tau d

tau. Integral 0 to infinity R h of d tau this is a constant right this is you can treat this as

some constant let us call it as p that is the total power in the channel.

So, basically the mean delay is defined by it looks like a probability calculation, but this

is how the mean delay is obtained this is a constant. So, we can sort of you know take it

aside, but again it is its part of the expression. So, now, if I were ask you to calculate tau

square mean value, mean square value exactly the same it will be 0 to infinity tau square

just like the replacing the pdf it is R h of tau, d tau into 1 by p that is a normalization.

So, this is the mean squared value and the RMS delay spread sigma tau is square root of

tau square bar minus tau bar whole square, and that is the expression for the RMS delay

spread and as I mentioned if you were to calculate the mean delay and the RMS delay

spread you will  see  that  these  two channels  give  you very  different  characterization

though the based on the power level both of them will be the same. This is the difference

between the first arriving multipath and the last arriving multipath is called the excess

delay. So, we characterize a channel by three measures one is r the mean delay the RMS

delay spread and the third one is the excess delay that is the total delay that you see

excess delay; three parameters which will help us I think. So, examples are before we go

to examples let us also look at a couple of the what you do for a discrete time.



(Refer Slide Time: 22:48)

So, it was a discrete discrete power delay profile very similar to the one that we saw in

the example. So, there is P 1 here at a delay of tau 1, P 2 at a delay of tau 2 and so on the

mean delay would be defined as now a summation over the multipath components tau n

R h of tau n. So, basically at that appropriate delay the normalize comes with summation

of over n R h of tau n, and again this the denominator is a constant this is equal to P a

constant and the mean square value tau square will be 1 over p summation over n tau

square R h tau n square R h of tau n, and that would be there and sigma tau would be

exactly like before tau square bar minus tau bar the whole square ok.

So, two based whether you are doing it in the continuous time or discrete continuous

variable or a discrete discretized variable, you should get the same interpretation, but the

again know that one cases in integral the other one is a summation.  Let us look at a

couple of examples I think that will be very insightful and also helpful in terms of the

understanding of the concepts ok.
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So, one of the common power delay profiles that we will encounter in wireless channels

is the exponential power delay profile. So, which means that initially the signal strength

is strong and then as time goes on these the delay the components delay die out, this a

very common one.

So,  that  is  the  early  arriving  multi  path  are  stronger  than  the  later  multi  paths  and

therefore, it dies down. But in wireless channels where supposing you had a building at a

distance and that was causing a strong reflection then what you will see is multi path

starts to decay and then suddenly it jumps up and then it is starts to decay. So, that is also

a very common channel profile that you will see in wireless channel. So, whenever there

is a strong component that is it is presence will be felt and again it is not may not books,

but it may it will look up of this type.

So, exponential power delay profile is useful for us. So, we can look at an example just a

single exponential delay profile R h of tau is given by 1 by tau naught e power minus tau

by tau naught. So, basically that and for tau greater than or equal to 0 tau naught is a

positive constant. So, this is a very familiar type of graph you know basically capacitor

discharging  inductor  all  of  those  are  a  exponential.  So,  we are  used  to  this  type  of

function. So, the integration is a is not difficult.  So, tau bar is given by integral 0 to

infinity tau times 1 over tau naught R h of tau you substitute, e power minus tau by tau

naught d tau and the denominator is integral 0 to infinity, 1 by tau naught e power minus



tau by tau naught d tau simple integrals both of them numerator and denominator and

you can verify.

So,  please  verify  the  following  results  again  through  the  process  of  completing  the

integrals that the answer comes out to be tau bar is equal to tau naught, tau squared bar

comes out to be equal to 2 times tau naught squared. So, which then says that sigma tau

is equal to tau naught. So, this is a sort of a unique channel where the mean delay and the

RMS delay are both the same value tau naught, and you can see where that is a point at

which you get one over e as the value of your in the decaying exponential.

Now, let us move on to discrete time example because the that is probably more likely

what  you  will  encounter  when  you  are  dealing  with  the  3G  4G  types  of  systems,

continuous power delay profile has been sampled and this has been given to us as a

example that we have to calculate ok.

(Refer Slide Time: 27:26)

Example 2. So, this is a discretized power delay profile discretized power delay profile

and these are scenarios for which we would definitely be interested in calculating the

characterization of the channel. So, here these power levels is given in dB. So, there is

minus 20 this is in decibels, minus 10 0 the multi the multi path power delay profile is

that there is one tap at minus 20 there are two taps at minus 10 d B and then with long

delay there is a third a fourth tap which is at 0 dB. So, this is 0 1 2 3 4 5 we will take it as

microseconds as our. 



So, tau bar again you may wonder why go through this exercise, but I need you to sort of

pay attention to this particular aspect tau bar is 0.0 1 minus 20 dB 0.01 into 0 plus then I

get 0.1 times 1, a 0.1 times two microseconds 0.1 within brackets is the strength times

the delay by five divided by it is 0.1 plus 0.1 plus 0.1 plus 1. Now why did I make the

make  this  exercise  is  very  often  student  say  you know what  this  did  not  contribute

anything right. So, therefore, I will leave of that why did not contribute to the numerator

why should I contribute to the denominator is that correct no because the otherwise what

will  happen  it  will  queue  your  result.  So,  yes  the  first  one  did  not  contribute  the

numerator, but it definitely there is a signal component there. So, which means that you

have when you normalization you must include that in the denominator. So, that is all I

wanted to convey in this one.

So, please verify that what you get is 4.39 microseconds, and that is the value you can

also verify the following results verify simple calculations that tau square bar comes out

to be 21.07 microsecond units square again it is a we do not use tau square, but if you did

use it you will have to indicate it appropriately and RMS delays spread comes out to be

1.37 microseconds RMS delay spread. Now just for illustrative purposes let me do the

following I am going to flip those channels around I am going to put the strong channel

at  0  delay  then  these  two  are  at  the  same  point  and  the  weak  one  goes  here  just

interchange the positions. So, this is at a height of one this is 0.1 0.01 again z0 minus 10

20 dB please do not do it in dB the answer you have to do it in the linear scale.

You will find that the mean delay in this case comes out to be 0.29 microseconds very

different from 4.39 microseconds. So, this is why characterization of the channel using

these tau bar and RMS delay spread very very important because in terms of the excess

delay both of them have got 5 microseconds as the excess delay they have got the same

power levels, but the tau bars are very different and the this one this tells us that the

channel green channel is much less dispersive than the red channel you may say you

know how can you say make such a statement because you know they look the same that

is that is how the receiver will see it the to the receiver the green channel is a much less

dispersive channel because this particular component can almost be ignored.

So, effectively the dispersive that I have to worry about is this and therefore, I can take

that into account. So, again the characterization of the multi path channels in terms of the

power delay profiles I hope you are comfortable with this is a useful characterization and



it helps us in the second dimension. Now I want to quickly move into another way of

characterizing the tau dimension.

(Refer Slide Time: 32:09)

And that we will do using frequency correlation frequency correlation and the name will

become clearer once we do the calculation. The first step that we are going to do is in the

basically now keep in mind that we are trying to characterize the tau dimension. So, I am

going  to  do  a  Fourier  transform so  that  there  is  going to  be  a  change  of  variables

basically I do the Fourier transform for the tau dimension not the delta t, delta t is already

completed.

So, tau maps to f in the in the. So, H of t comma f is the Fourier transform of h of t

comma tau and let me just right it down. So, that we are no confusion about the notation

it is minus infinity to infinity Fourier transform in the tau dimension, h of t comma tau

just ignore the fact that there is a t dependence also basically it is a function of tau e

power minus j 2 pi f tau d tau assuming that it is a way a function of tau you do the

Fourier  transform with  respect  to  tau.  Now what  we would  like  to  do  is  frequency

correlation says what is expected value of H of t 1 comma f 1 some frequency after I

have done the frequency come compared with H star of t 1 plus delta t and f 2 notice that

I am doing the correlation there are two variables on the time dimension I know that

there is a wide sense stationarity. So, I am you calling it as t 1 plus delta t and on the



frequency side I am calling it as f 1 and f 2, 2 different frequencies I want to know what

is the expression for the correlation ok.

So, like before I would like you to substitute the integrals. So, basically you will get

expected value of the first integral in green second integral in blue. So, that we can this

minus infinity to infinity h of t 1 comma tau e power I have to tau 1 because basically the

independent variable. So, e power minus j 2 pi f 1 tau 1 d tau 1 that is the first integral,

second integral I write it in blue minus infinity to infinity h of h star of t 1 plus delta t

comma tau 2 that is the independent variable with which I am doing the transformation, e

power it should have been minus j because of the conjugation it becomes plus j 2 pi f 2

tau 2 d tau 2 that is the sum within the expectation. 

So,  again group those terms which will  affect  the  expectation  basically  you will  get

expected value of h of t 1 comma tau 1, h star of t 1 plus delta t comma tau 2 this is

already a result that we know this is the autocorrelation which is basically the Bessel

function R h of delta t because of the wide sense stationary uncorrelated scattering it is

tau 1 delta of tau 2 minus tau 1 right this this exactly the expression from the wide sense

stationary  uncorrelated  scattering.  So,  again  I  will  just  write  this  this  is  the WSSUS

property. 

If we now use this result in the substituted in the previously expression what we get is a

single integral because the double integral now collapses to a single integral because it is

only non-0 when tau 1 equal to tau 2. So, what we get is minus infinity to infinity R h of

delta t comma tau 1, the e exponential term e power minus j 2 pi f 1 minus f 2 tau 1 d tau

1. So, the Fourier transform has been computed I am trying to do a correlation operation

on the Fourier transform what comes out of this is a very interesting result which says

that the result is does not depend on the specific frequencies, it actually depends on the

difference of the frequencies very interesting result. So, I will call this as R uppercase h

to show that it is a Fourier transform delta t not touched that was not affected by the

transformation this is now a function of delta f it  does not depend on f 1 and f 2 it

depends on f minus f 2, f 1 minus f 2 ok.

So, the frequency correlation like the time correlation has got a very interesting property

in the context of a wireless channel. So, this basically says that the frequency correlation

frequency correlation is what I mean by this expression, I have I have defined the Fourier



transform and I am taking the correlation of the Fourier transforms. So, the frequency

correlation depends on delta f and it is a very interesting result we will interpret it in a

moment.  So, this particular function has got a name it is called the spaced frequency

spaced time; that means, it is a it is function of delta t, it is also function of delta f it is

called spaced frequency again just to describe what it is correlation function. 

So, a correlation function in frequency, but it does not depend on it only depends on delta

f and in time already depends only on delta t correlation function again just to describe it,

but you know exactly what it means. So, what have we done took the Fourier transform

of the channel response with respect to the delay dimension then computed a correlation

function  and  showed  that  it  comes  out  to  be  a  function  that  depends  only  on  the

difference of the frequencies ok.
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So,  here is  the  how we would  like  to  like  to  work with this.  So,  let  us  indicate  or

substitute delta f equal to lambda let us just a substitution. So, the result that we now

have is says minus infinity to infinity, R h of delta t comma lambda e power minus j 2 pi

lambda tau d tau this is e this is what we write as R h of delta t comma lambda that is the

space time space frequency and now if I set delta t equal to 0 if I set delta t equal to 0

what is happening what is? If I set  delta t to be equal to 0 what did you say at  the

beginning of the lecture it becomes the power delay profile. So, this space time space



frequency which is actually a correlation function turns out to be the Fourier transform of

the power delay profile. So, that is the observation that we get.

So, if I set delta t to be equal to 0 I get R h of lambda to be equal to the Fourier transform

of the power delay profile R h of lambda Fourier transform. So, let us sketch it the power

delay profile something like this what are the so, this is actually R h of delta t comma tau

I have set delta t to be equal to 0 that is what and therefore, I am now calling it as R h of

tau right the basically the that is what a reason and I am going to do a Fourier transform

of this, but I would like to make a couple of observations this R h of tau is a power delay

profile. So, I can make the following that it is real valued can I also say that it is greater

than 0. So, power delay profile either you get a something positive or not so power delay

profile. So, if I have a function that is real valued and positive what can you tell me

about it is Fourier transform.

Student: Symmetric.

Symmetric. So, it is going to have a response that looks like this and guaranteed that the

peak value will occur at 0, because you are going to add all positive quantities to get the

Fourier transform at 0. So, basically this is the peak value that is going to occur it is

going  to  be  symmetric  I  am  really  not  too  much  worried  about  the  shape  for  the

following reason. So, what is my access this is delta f and this is the tau dimension. So,

power delay profile through a Fourier transform operation gives me a shape which is

symmetric and the peak occurs at the delta being equal to 0. Of course, if the peak occurs

there and it is symmetric it is going to taper off to the other side you may say well what

is the guarantee that it is going to taper off what why does not it go do some other some

other thing. So, may be at this point another explanation from Fourier transform theory is

very helpful to us case one this is just to understand how what how to interpret this

result. So, Fourier transforms result if this is time Fourier transform is wide symmetric

and wide ok.

Now, if I have a Fourier transform that is this way this is going to be an impulse. So, if

something is very wide in the time domain what do I expect to see something which is

very narrow if it is very narrow in that in the in the time domain it is going to be very

wide. So, it does not matter which way it is it is going to be you know somewhere in

between the two. So, there is going to be eventually if this power delay profile went on to



infinity then this will become narrower and narrower if it was very short it will become

wider, but at the end of the day there is a still a this is a going to be a dropping function.

So, now what I am going to do is just like in the Bessel function case I am going to see

where the level crosses one by root two if the I normalize this to 1, 1 by root 2 that will

give  me  a  certain  spacing  between  those  two points  I  am going to  call  this  as  my

coherence bandwidth; and let me just sort of give you a feel for why the name and where

it is going to be linked to as I said you know it is a jig saw puzzle where you are taking

pieces from different places. Now when we are doing this TSE and Vishwanath example

we said that coherence bandwidth is the amount by which you must move in order to see

a  frequency  correlation  that  is  substantially  different,  this  is  frequency  correlation

remember what did we call this calculation frequency correlation.

Now, if I move by coherence bandwidth I am going to see a sufficiently different channel

because the coherence or the correlation of the frequency response has decreased by a

certain amount. So, this is what we refer to as coherence bandwidth and this is what is

going to be characterized in our calculation I believe this has to be two times coherence

bandwidth because. So, now; obviously, the wider the power delay profile then narrower

coherence bandwidth.  So, coherence bandwidth must be inversely proportional to the

delays the RMS delay spread correct, it has to be because wider the power delay profile

the larger will be the sigma tau narrower will be the coherence bandwidth.

So, the actual relationship again through empirical methods has come out to be is greater

than or equal to 1 by 5sigma tau that is a way of characterizing saying. Once you have

the power delay profile compute the sigma tau that is easy for us to do and the coherence

bandwidth is going to be greater than 1 by 5 sigma tau. So, again it is a characterization

as we mentioned this is a way to understand the tau dimension in the channel. So, let me

just summarize what we have said so far and hopefully that that will be a good point for

us to stop.
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So,  we  had  the  channel  response  h  of  t  comma  tau  from  that  we  calculated  the

autocorrelation function R h of delta t comma tau. Now we did a first Fourier transform

to get a Fourier transform in the delta t dimension to get the Doppler’s spectrum s of rho

comma tau.  We have done a  second Fourier  transform and a  correlation  to  get  this

expression the if I Fourier transform with respect to tau the power delay profile if I set

this where delta t to be equal to 0, I will get power delay profile that gave me R h of delta

t comma delta f. So, this is the picture that we have so, far I have the channel response I

have got the auto correlation function what did we do to the autocorrelation function R h

of delta t comma tau we have set delta t to be equal to 0 that gave us the power delay

profile. Power delay profile is characterized by three parameters tau bar sigma tau and

tau max the excess delay. Now if I take the Fourier transform of the power delay profile I

will get this space time spaced frequency function delta t delta f and this tells me how to

get the coherents bandwidth.

Now, the same thing I take the autocorrelation function delta t comma tau and I set tau

equal  to  0;  that  means,  I  am not  worried  about  the  delay  dimension  only  the  time

variation this came out to be P 0, J 0 2 pi f D delta t this is the Doppler spectrum when I

do the Fourier transform, and this this is characterized by f D and this also is related to

the coherence time. Lots of pieces around we need to put all of them together to get the

complete picture.



So, mixed class with this picture will become crystal clear in terms of all the pieces and

how they fit together. So, as of now we have got all the information. So, the key points

that I would like you to do is review what we have covered in the class, but also make

sure that you have a chance to look at the following reading assignment Molisch chapter

7 all of this is covered there also covered in Rappaport chapter 4 and goldsmith chapter 3

whichever is your favorite book if preferably all three you should if you can at least take

a look at you will find that this information what we have covered in today’s class we

will  know  integrate  it  into  a  single  composite  picture  which  gives  us  a  complete

characterization of the wireless channel.

Thank you we will see you tomorrow.


