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Good morning, we begin with a quick review of the lecture number 23 and then the new

concepts that we want to introduce in today’s lecture the substantial focus is going to be

on a very powerful model that we have which is the model which we refer to as the wide

sense stationary uncorrelated scattering model and it is one of the things that helps us

completely characterized wireless channel, time domain, frequency domain, Doppler; all

of the elements are captured in this model. 

So, it is a very important model, we will definitely spend time on that. We have already

looked at the concept of coherence time when we talked about the example and say N

Vishwanath and we will now formalize it using the wide sense stationary un w s s u s

model and of course, there will lots of a simple examples to help us capture the concepts

even as we as we go along. So, let us begin with a quick summary of the points that we

have discussed in the last class and then we will move on to the new-new points in

today’s class.

(Refer Slide Time: 01:17)



So, in the last class we have looked at the Nakagami m fading. So, let me write down

that our interest is to study Rayleigh; fading Rayleigh is the case of interest of lot of

interest.

(Refer Slide Time: 01:35)

But several times the environment requires to characterize other channels as well. So, we

come up with the Rician when there is a line of sight component depending upon the

amount  of line of sight component  relative to the non line of site you get family of

distributions  then  we also have  the Nakagami  m;  Nakagami  m distribution  which  is

obtained from the experimental data may be its to sort of say that these 2 are in some

way equivalent because they are covering the same except that Nakagami m is a broader

class of a distributions. So, the Rician distribution will be characterized by means of the

rise factor k rise factor k the Nakagami m will be through the fading figure m is equal to

fading figure and they are related by the relationship we have given in the last class, but

let me just write it down k plus 1 whole square divided by 2 k plus 1 that says that I can

relate k to m and m to k that sort of makes me able to go from Rician to Nakagami. 

Now, interestingly both of these have the Rayleigh as a special case. So, in the case of

Rician it will be k equal to 0 in the case of Nakagami its m equal to one they give you

that as a special case and is useful for us to keep that relationship in mind because when

we get  expressions for the for  the bit  error  rate  using the Nakagami  m you can get

Rayleigh as a special case by substituting these specific value of the fading figure. So, in



the  context  of  the  bitter  rate  calculations  we  introduce  the  notion  of  the  moment

generating function.

Moment  generating  function;  we can  talk  about  for  the  any distribution,  but  we are

primarily interested in the distribution of SNR we are also interested in the distribution

of the envelop, but SNR is very useful for us f gamma of gamma this; is the instant pdf

of the instantaneous SNR instantaneous SNR we would be very interested to understand

what would be the 5 gamma of s which will be minus infinity to infinity the distribution

e power s gamma d gamma again we derived it for the Rayleigh fading channel for the

Rayleigh fading and said that the moment generating functions are for the Rician and

Nakagami are given in Andrea Goldsmith. So, goldsmith books, so, therefore, this is just

as an illustrative example for the Rayleigh fading channel the SNR has an exponential

distribution and the moment function is given by one minus gamma s.

Now,  we  also  showed  how we can  calculate  the  bit  error  rate  of  DBPSK; DBPSK

thorough direct integration also through the use of the moment generating function.

(Refer Slide Time: 05:02)

Let me just capture that again the interpretation in terms of a Laplace transform; Laplace

transform and also in terms of the expected value both of them are useful for us keep in

mind that we have define a or region of convergence and we just want to keep that a

picture in mind as well.



(Refer Slide Time: 05:30)

So, now the moment generating function how did we use it to calculate the bit error rate

of DBPSK we said the integral of interest is a half e power minus gamma f gamma of

gamma that is the expression for the bit error rate when you integrate it over the range of

gamma that gives you the bit error rate in the fading channel then we rode down the

expression for the phi gamma of s that is the moment generating function and saw this

similarities between these 2 and then said well this is nothing, but special case of the

moment generating function evaluated at a specific value s equal to minus one which lies

in the region of convergence and of course, the scale factor half just comes in to the

picture.

Now, I would like to extend this the; this usefulness you may think well it is only for

DBPSK what about others. So, there is a very broad class of a modulations where the

probability of error in AWGM probability of error in AWGM if it is of the form C 1 e

power minus C 2 gamma C 1 is a constant C 2 is a constant and basically it characterizes

a  bit  error  rate  depends  on  the  modulation  type  that  we  have  now  if  you  have  a

modulation of this type then the probability of error in a in the fading channel in the

fading channel  will  be integral  0 through infinity  C 1 e power minus C 2 gamma f

gamma of gamma d gamma that is the general expression for the probability of error

given the distribution of the SNR.



Now, notice that this can also be readily linked to the moment generating function C 1 is

a constant that comes out of the expression this is phi gamma of s where s is evaluated at

minus C 2 minus C 2 again it is a; for broad class of transfer function as long as the error

is  of the form a something e  power minus C 2 gamma you can quickly derive that

expression. So, very quickly you know if I were to ask you to evaluate this expression in

Rayleigh fading Rayleigh fading I would not even look at the integral I would straight

away say that were the phi gamma of s in the Rayleigh fading is one over one minus

gamma s. 

So, the bit error rate in Rayleigh fading is going to be C 1 what is that divided by one

plus C 2 gamma that is it that is the expression for because basically I took phi gamma f

s kept the constant and then substituted s is equal to minus C 2 high SNR approximation

would be given that I have my probability of error expression as C 1 by one plus C 2

gamma what is the highest SNR approximation you should be able to get this basically

says that gamma is very large. So, C 2 gamma is going to dominate over one. So, it will

be asymptotically this will be C 1 by C 2 gamma that is it the high SNR approximation

always says that gamma is large. So, if there are other constants it will dominate over the

other  constants  and  therefore,  easy  for  I  mean  the  becomes  a  useful  way  of

approximating I would like to now go back and address one more question.

(Refer Slide Time: 09:43)



now what about if the error function is not exponential what if it is a q function and I

have some arbitrary pdf and again and to anticipate that question let us look at a example

again its very straight forward. So, for example, GMSK; GMSK yesterday we said that

the BER in AWGM was approximated by q of square root of one point four gamma now

what do I do? I go back and read do the integration no we showed that you can just

substitute and get that.

So, in the general case if my error function is of the form q of root beta gamma beta

some constant and many of our modulations schemes we will fall in to this picture there

that constant changes, but ultimately it will be of the form beta gamma. So, this we can

then through the process of substitution whatever we have done I believe we showed it in

the last class or otherwise if not through the process of substitution where you would do

gamma replace by beta gamma by 2 in the expressions that we have that will give us one

minus square root of beta  gamma divided by 2 plus beta  gamma and the high SNR

approximation in this case in the in the a case of BPSK was one over four gamma if you

replace it with the this expression it becomes 1 over 2 beta gamma at high SNR.

So, whether it is the exponential form or the complementary error function form there are

certain simple tricks that you can use to get the bit rate expression, but of course, there is

a lot more to the BER analysis than just getting the basic form and that is where I would

like to high light some of the applications of what we are going to be discussing today.

So, any questions on what we have covered in lecture 23 basically a new; new type of

fading which has a broader characterization Rayleigh as a special case of the Nakagami

m with a fading figure where m equal to one then the moment generating function and its

role  in  computing  the  bit  error rate  and also some simple techniques  for getting the

expressions when you have a form q is equal to root beta gamma or when you have the

form that we discussed just now where you we have the probability of error is C 1 e

power minus C 2 gamma.

So,  these are  2 very broad categories  of  a  expressions  for  the  different  modulations

schemes that will encounter and therefore, we have some simple tools to calculate the

basic bit error rate, but as I mentioned this course is not about the basic the basic is what

you have done in digital communications we have just showed you that you can extend it

to the fading channel, but this course is all about taking that BER performance in fading



and making it  go closer  to  AWGM that  is  where  the  trick  is  and that  is  where  the

challenge lies. So, that is where we pick up today’s lecture.

(Refer Slide Time: 12:56)

So, as a first motivation for the types of things I have going to be studying let me a write

down an example or an application again its simple example, but again it gives you a lot

of  insight  and into the motivation  for  the things  that  we are going to  be doing.  So,

consider that I have a base station and I have a mobile which has got 2 antennas a 2

antennas and the transmission from the base station is picked up by both antennas, but

because of their spacing between the antennas the channels are different and this one is

seeing an instantaneous SNR gamma one instantaneous gamma 2.

Now, at the receiver I can do one of 2 things I can do what is called antenna selection

antenna selection would be a very simple method which says compare gamma one and

gamma 2 if gamma 2 is higher pick gamma 2 if gamma one is higher pick gamma. So,

that is what we call as antenna selection. So, you compare gamma one is greater than or

less than gamma 2 and then you pick the pick the stronger antenna that is one way of

doing it and this would also shift the changes statistics. So, there is selection diversity.

Now, there is an even better form of diversity which we; I will for now call it optimal

diversity optimal diversity which says you do not need to pick the larger of the 2 you can

actually do a form of combining. So, that your resultant diversity. So, in this case the

gamma  diversity  is  equal  to  the  max  of  gamma  one  comma  gamma  2  correct  that



selection  diversity  optimum  diversity  says  you  can  actually  achieve  gamma  1  plus

gamma 2 this is very very powerful because even if both antennas are in a fade you may

actually be able to combine them and detect the signal because the combination of 2

SNR may be above the threshold that you can detect. So, this is very very useful for us.

Now, notice that gamma one and gamma 2 are the instantaneous SNRS both of which are

which are random variables both of which we will have their own distribution and there

is no way we can make the assumption that they are identically distributed because one

antenna may be in the top of the phone one antenna may be inside one antenna may be

behind  the  battery.  So,  the  we  cannot  make  the  assumptions  that  both  of  them are

identically distributed now that are exactly where the challenge comes. So, if I have a

new random variable  which  is  gamma one plus  gamma 2  where  I  do  not  have  the

guarantee that their identically distributed then I have a problem because I know if I if

you tell me give me the pdf of gamma diversity I have a problem because most of the

familiar methods that we have worked with says assume that the the variables that you

are adding are identically distributed.

So, here is the challenge that is before us. So, we want to estimate the probability of error

under maximal ratio combining or optimal diversity optimal diversity. So, this is going to

be integral 0 to infinity probability of error under gamma diversity and I will ask you to

give  me  the  pdf  of  gamma;  gamma diversity.  So,  this  is  going  to  be  an  absolutely

essential requirement for me to characterize the behavior under these types of scenarios

and. So, the question is what is gamma f gamma diversity gamma diversity what is this

equal to and I am sure you are familiar with the in probability statistics we often do this

type of a problem I is equal to one to N x i and we find out that this is equal to y and find

out, but we often make the assumption that they are identically distributed. So, that sort

of mix the, but it is definitely doable if you have a different-different distribution, but not

straight  forward.  So,  this  is  where  moment  generating  functions  come  and  play  an

important role.



(Refer Slide Time: 17:22)

So, let me just define the method and then we will do. So, let x i is equal to one through

N b a set of independent random variables that is all the assumptions that we are making

be a set of independent random variables not identically distributed. So, y is equal to

summation I equal to one to N x i the moment generating function of y is given by

expected value of e power s y correct that is the expected interpretation as an expected

value the moment generating function.

So, this the moment generating function that we are interested in, so, now, substitute for

y this becomes expected value of e power s times summation over i x i basically your

replaced  y  with  summation  of  x  i  basically  expand  the  summation  and  rewrite  the

expressions this becomes expected value your adding the powers. So, therefore, it is like

multiplying the exponents multiply the exponentials. So, I product of i is equal to one

through N expected value of s times x i i have just rewritten just a simple rewriting of

this  expression.  So, the right  hand side is  a  expectation  of N random variables  of a

function of N random variables. So, I would now get a integral situation where there are

N integrals each of which going from minus infinity to infinity whatever is the range of

the these general definitions.

So, from minus infinity to infinity there will be N such integrals product of I is equal to

one through N e power S x i i must have the joint pdf of these random variables x 1

through x N then integration over the variables d x 1 to d x N this is what will give me



the  expected  value  of  the  quantity  that  is  within  this  bracket.  So,  again  I  have  just

rewritten the expressions for the moment generating function of y now this is these are

assumption is that these are independent random variables. So, the joint probability is the

product of the probabilities which now says in one step you have the final answer I is

equal to one through N phi of x i not i phi of x i of s. So, it is a product of their moment

generating individual moment generating functions and as long as you know what the

distribution of those variables are you can write down the expression by inspection there

is absolutely no problem for that no if its. So, happens that they are i i d which is very

good for us then it becomes phi x of s raise to the power N once again a very easy thing

for us to work with.

Now, what is the benefit of all of this notice that we said that the moment generating

function can be interpreted as a Laplace transform. So, which means that if I have the

moment generating function I can do the inverse Laplace transform and get the pdf very

straight forward. So, once I get the phi y of s then I can do the inverse Laplace transform

to get the f y of y. So, what may have been difficult for me to do directly in the with the

pdfs it becomes a very easy problem for us when we work with the moment generating

function and then do the inverse Laplace transform notice that we have used both the

mathematical interpretation of m g f as well as the Laplace transform interpretation in to

our advantage to make sure that we are able to get.

In case you are wondering why the name moment generating function I probably you are

familiar with this phi gamma of s phi x of s definition is minus infinity to infinity f x of x

e power S x d x we talked about differentiating an integral. So, if you can differentiate

from me phi the moment generating function with respect to s differentiate it with respect

to s first term will be with respect to the upper limit second term with respect to the

lower limit both are constants are not in the picture then you have to differentiate the

integrand. 

So, basically differentiate the integrand and set s e equal to 0 if you do the differentiation

should be straight forward what  you should get inside the bracket  is  e  power minus

integral minus infinity to infinity x times f x of x d x which is nothing, but expected

value of x and once you have the moment generating function it is very straight forward

you take the second derivative d square phi x psi x of s divided d x square set s equal to 0



you will get expected value of x square and if you want the higher order moments is just

more difference additional differentiation.

So, moment generating functions have a very useful rule in the context of mathematics

you may not have seen it, but for us its very very useful because, but for the moment

generating function some of these pdfs would be a quite difficult for us to work with any

questions.

So, moment generating functions I will assume that we are familiar with it that you can

apply the moment generating function to get the more difficult pdfs and then use that to

get the bit error rates of the modulations schemes that we will encounter that something

that is useful tool for you to have once you as we study this course.

(Refer Slide Time: 23:52)

Now that is has set the stage for us to talk about the important model that we are going to

working with wide sense stationery uncorrelated scattering model for a fading channel.

So, for this I would like us to revisit the multi path model that we had derived earlier

when we first talked about Rayleigh fading.

So, go back turn your pages in your nodes I do not have the lecture number, but I am

sure you will see that this is just before we derive the multi path model. So, we said that

each of these multi path components there are large number of multi path components

which are going to get super posed each of them has got a angle of arrival based on their



the direction of their multi path component; that means, their Doppler’s are different. So,

based on that we said that there is a channel gain alpha N and there is a phase term phi N

E t comma tau e power j where I should write it. So, alpha N t comma tau e power j phi

of t comma tau. So, I want to focus in on the part phi phi of t comma tau there should be

an N here.

So, phi N t comma tau again please if you can refresh just turn your pages back to that,

but if not I will just write the expression minus 2 pi f c tau N of t minus 2 pi 2 pi f D n f

D n t minus tau N of t this was the expression for the resultant phase of that particular

component  and we actually  gave  them some names this  one  we called  as  theta  N t

comma tau and the next one we labeled it as psi N t comma tau again the exactly copied

from the previous page.

So, what this model told us was that the received signal r of t can be written as a super

position of many components where this is resultant of alpha N of t that is the time

varying gain and e power j phi N t comma tau times u of t minus tau N of t. So, basically

you will get shifted versions of the transmitted signal transmitted signal is u of t u of t

and they are going to be scaled by these complex numbers and then added together to

produce the resultant signal.

So, we said that the channel response not impulse response; channel response because it

is not a LTI system. So, I cannot call it an impulse response, channel response at a given

time can be characterized as a 2 dimensional variable h of t comma tau, this is given by

summation over N alpha N of t e power j phi N of t comma tau and delta of tau minus tau

N of t this was the channel response and again if you recall we explained this or a used a

3 dimensional representation. So, if you think of this as the amplitude this as the delay

dimension which is indicated by tau this is the time dimension which is indicated by t.

So, at a given time instant; a snapshot, I may get some number of multipath components.

So, we said that I could get a multi path component like this some distribution then at

another  time instant;  another  time instant  which is  a  different  snapshot,  I  may get  a

channel which is very different. So, for example, the first path may be one, second path

may have gone off and then you have a second (Refer Time: 28:19). So, basically that

this is what it looks like when you look at a channel response at different instances of

time and these are the multi path characterization that we have obtained I hope you are



familiar with it you are able to recall whatever we have discussed in the last class in the

and the when we talked about the multi  path model.  So, start  with using that as my

starting point I want to build the w y w s s u s model and therefore, that is why we are or

rewriting this equation.

So, I would now like you to focus on the phase of the multi path component. So, that is

phi N of t comma tau that is the phase response now the previous characterization was

for the earlier  discussion, but the same thing I want to write it  in a slightly different

manner for the particular analysis that we are going to be doing now. So, I am going to

rewrite it in the following form again you can verify that is exactly the same 2 pi f c

minus f D comma N minus 2 pi f D N times t and I would like to label this as theta N hat

there is an amusing theta N hat is because theta N I have used it for something else now

going through is a missing something or tau.

Thank  you  I  missed  a  tau  N  of  t  that  is  a;  that  is  multiply;  it  is  not  exponent  its

multiplying that bracket term in the bracket using the same arguments as before because

these Doppler shifts are can be based are based on the angle of arrival; these this term

theta N can lie any were between minus pi to pi there is no preferred direction.  So,

therefore,  we  can  say  that  you  know if  there  are  large  numbers  of  these  multipath

components then this theta N hat can is basically there is no preferred direction it  is

uniform in minus pi to pi minus pi to pi I have no preferred direction. 

So, in other words this is this now captures our understanding based on the angle of

arrival  this  theta  N hats  are  uniform in the  azimuth  plane  that  is  the  horizontal  x  y

direction in the Azimuthal plane. So, that is a observation that again based on the earlier

reasoning same reasoning applied again in the Azimuthal plane hell very useful and a

very important thing that is going to come about. So, the first thing that we ask is; what

is the expected value of theta N expected value of theta N 0 uniforms in this distribution.

So, I there is no can be minus plus if you take it as minus pi to pi the expected value 0

now think and answer this question expected value of e power j theta N hat what is that

right a next step and then you may change your mind cos theta N hat plus j times sin

theta N hat is that correct and uniform distribution.

Student: Sir what is that c to the 0?



So actually 0 is the correct answer. So, so the of course, you can write down the expected

value,  but  basically  you  are  integrating  sign  or  cosine  over  an  entire  period.  So,

therefore, it will go to 0. So, this is a very useful result for us to keep in mind and extend.

(Refer Slide Time: 32:25)

Now let me extend this to the following. So, what is expected value of e power j theta N

hat minus theta m hat where N is not equal to m; if N is not equal to m and if theta N and

theta  m  are  independent  right  there  is  no;  that  means,  your  basically  looking  at  2

multipath  components  there  is  no relationship  between  their  angles  of  arrival  (Refer

Time: 35:53) independent of each other.

So, then this also becomes delta of N minus m it is equal to one if it is if E; E power j

theta N is z otherwise it will basically it is non zero only when it is only when its equal in

this fashion. So, that tells me that I can now write the following expression I want what

am I trying to do may be even before we before we do that see this red; red in channel

response now I want to know how this red channel response changes as a function of

time. So, I am not I am not worried about the delay dimension I am worried about how

this is going to change at different instances of time as I you know along these dots that

is my a intent for task that I was doing.

So, the thing that I going to do now is calculate expected value of h of t comma tau h star

of t plus delta t just a small delta increase in the time, but I am not changing the tau

dimension not worried about the tau dimension right now I can even assume that there is



no dispersion there is only one single tap is that if that is helpful you can take it up in that

in that fashion this is an important expression. So, what are we trying to do I am trying to

get the autocorrelation of the channel response basically I am trying to see between time

t and t  plus delta  t  is there any correlation between them. So, this  is  autocorrelation

expression for the autocorrelation of the channel impulse response at a given tau notice

that tau is the same for both I am just changing time dimensions. So, I am going along

the time dimension at a given tau and trying to see if there is time correlation.

So, this is basically we will write down expression may look a little messy when you

write down, but actually keep in mind I am trying to get an understanding of how this

channel changes is it totally uncorrelated from time to time that is you know channel at

this time instant is very is a or how does it change. So, that is what we are trying to get.

So, this is written as expected value of write down the expression for h of t comma tau

that is the first summation, let is call it as summation over N then h conjugate that will

also give you another summation we will have to keep different variables of summation

independent variables. 

So, we will call it N and m. So, the expression inside will be alpha N of t alpha m of t

plus delta t that is part from the second summation alpha is a real valued a parameter

because it is a amplitude. So, therefore, there is no conjugation there the all the phase

terms will see a conjugation e power j theta N hat minus theta m hat, if I miss something

please catch it let me know e power minus j to pi f D comma N minus f D comma m

times t run out of space, but let me just write the last term e power j 2 pi f D m delta t.

So,  I  got  all  of  the terms with the correct  signs  and this  is  within the brackets.  So,

basically this is the; that we are interested in looking at now of course, the alphas are

completely independent of the angles of arrivals. So, basically we will quickly try to

segregate and try to get the things of interest. So, this is a parameter of interest for us. So,

expected value of alpha N alpha m is an important  a important  parameter.  So,  let  is

quickly analyze that.

So, if you if you expand this expression notice that you will get a expected value of e

power j theta N minus theta m hat. So, that is equal to delta of N minus m which means

the  double  summation  will  collapse  to  a  single  summation  will  work  with  a  single



summation; summation over N I am going to take the expected value inside it will now

be alpha N of t alpha N of t plus tau alpha N t plus delta t. 

So, that is one of the terms then notice that where ever this N and m are the same. So,

some of the terms have cancelled out and what we are left with is another term which is

expected value of e power j 2 pi f D N delta t this term gave us the delta function. So,

which means this one goes away living you only 2 terms in the expectation one of them

is the amplitudes the other one is the with connected to the phase. So, there are 2 things

that we will try to capture and very quickly get the key results that that we have.

So, if you make the assumptions that delta t is small. So, this can be written as e power

alpha N t  wholes magnitude  square.  So,  in  some sense this  is  like the power of the

received signal. So, this has the notion of the power some measure of power amplitude

squad is coming into the picture expected value of that, but the second term may be not.

So, obvious let us take a closer look. So, the second term is what we are going to focus

on expected value of e power j 2 pi f D N times delta t actually the answer comes in just

one step. 

So, the insight comes from this particular observation f D N is maximum Doppler times

cosine of the angle between the direction of propagation and the direction of motion. So,

and because there are large number of Scatruss from our model we have always being

saying that  beta  is  uniformly  distributed  uniformly distributed  the  only  thing  that  is

random here  is  f  d.  So,  therefore,  I  know that  it  that  depends  on  beta  and  beta  is

uniformly distributed. So, I can calculate this expected value.

So, the expected value here will be minus pi to pi is uniformly distributed. So, its one

over 2 pi e power j to pi its now f upper case d because its d we writing it as maximum

where f upper case d is max Doppler;  maximum Doppler shift or maximum Doppler

frequency f D times delta t delta t times cosine beta d beta that is the random variable

there we got the pdf and we have written down this expression.

Now, this is also of the form of another known function 0th order Bessel function let me

just write down the definition J 0 of x is one over pi integrals 0 to pi e power j x cos beta

d beta. So, notice that it is of the form. So, this is. So, this particular one is going from

not from 0 to pi, but from minus pi to pi split it as 2 parts you can you can show that each

of  them is  equal  to  one half  of  a  Bessel  function  and one half  of  this  same Bessel



argument the argument that is of this is the expression that is here which is 2 pi f D times

delta t 2 pi f D delta t now if you take a minute to sort of write it down systematically I

am sure there is nothing complicated here, but you may be wondering why I am doing

this because you know what at the end of the day what did.

So, basically this tells us that the autocorrelation the auto correlation is equal to equal to

expected value summation expected value of alpha squared alpha N squared where the N

is over all the. So, if I if I call this as my some measure of power let me call it as p not its

some average value that is some p naught. So, my autocorrelation is equal to p not which

is a constant times j naught 2 pi f D times delta t the most important thing is the auto

correlation is of the form of a Bessel function that is interesting enough, but look at the

argument of the Bessel function it is does not depend on t it depends only on delta t. So,

this is what makes it a w s s process the amplitude the or the channel response as it varies

as a function of time looks like a stationary wide sense stationary random process.

So, therefore, there is correlation between any 2 adjacent points it does not depend on t it

depends on the time separation between those 2 points and that is consistent wherever

you observe it is a very useful parameter for us to characterize.

(Refer Slide Time: 43:38)

So, let me write it down. So, this is the wide sense stationary property w s s property in

the t dimension in the time dimension in other words for a given tau if I observe the time

variation or the auto correlation of the channel response R h is actually a function of



delta t comma tau the auto correlation function and this is equal to a constant p 0 times J

0 2 pi f D times delta t.

That is the first part of the w s s u s model and this is going to give us a lot of very useful

insights in a few minutes we will quickly capture that. So, I hope you will be able to go

through the derivation look at the definition of the 0th order Bessel function may be we

just write this down J 0 J 0 is a 0th order 0th order Bessel function of the first kind again

that is a standard function not defining something different Bessel function of the first

kind and it has got certain properties which we would like to like to understand and to

exploit the first of it is going to come immediately. So, let is quickly look at the behavior

of this J 0 function the J 0 function if you plot or if you look at it looks like a you know

like a sink function looks like a sink function. So, it basically starts of at high value then

cuts at 0.

Now, notice that your argument. So, this is your time spacing time spacing which means

this is a function of delta t this is your R h of delta t comma tau tau is not in the picture

your only plotting the variation as a function of delta t now if my Doppler increases if

my Doppler increases; that means, if I have. So, notice that the. So, the point at which

this one crosses the Bessel function crosses is when the argument of the Bessel function

is 2.4 in other words J 0 of 2.4 is equal to 0 that is from the plot of the Bessel function.

So, which says that basically the 0 crossing will occur when 2 pi f D delta t is equal to

2.4. So, I have drawn this for some f D this red is corresponds to some f D.

Now, if I have another Doppler which is f D dash which is greater than f D notice that f

D is larger. So, delta t where the 0 crossing occurs will occur earlier. So, the green line is

going to look like this. So, this is for a higher Doppler. So, this is f D dash and by the

same token if I have a f D double dash which is less than f D the graph is going to be like

this that is f D double dash.

So, in general this is the direction of decreasing f d. So, as I decrease f D it will become

shallower and shallower the as you increase f D it will become steeper and steeper. So,

the basic observation is that I get the intuition about these graphs by saying given this

equation if f D decreases; that means, delta t will increase and basically vice versa you

can than interpret this case, but insight is most important for our discussions. So, let us

take the following special case there is a special case special case is f D equal to 0. So,



what happens the channel is not changing at all no Doppler right basically f D equal to 0

means there is no mobility no change.

So, channel is not changing; how should it reflect in my autocorrelation it should look

like a straight line which is what it is J 0 of 0 is equal to one and its equal to constant all

the way along. So, basically you can draw another line which says this corresponds to f

D equal to 0 that is again very consistent when what we would expect now if. So, the

observations that we are making is that low Doppler the channel is highly correlated

basically you have to the delta t for which the channel remains correlated is much higher.

So, when you look at pedestrian scenarios pedestrian is low Doppler low Doppler and

this  is  gives  us  a  very  good a  structured  frame work to  make statements  remember

previously when we said low Doppler means your fade will last a long time now you can

tell exactly how long the fade is going to last based on the Doppler because I now know

how long is because the channel is going to change very slowly if I am a pedestrian user

and I go into a situation where there is a fade I am going to be stuck in the fade for quite

some time except if I use frequency hopping or some other method I am going to be in

trouble.

So, this actually now starts to give us a very solid way of characterizing the system and

ability to work with that, so, what I would like you to do is read up the corresponding

portions either from Molisch or from Goldsmith both of these are equally good because

this is now the frame work on which the we have we have we have addressed the first

aspect wide sense stationary part of it. 

Now what happens to the uncorrelated scattering and what happens to the interactions

between the time and frequency domain and what does the what are the implications in

terms of the system design now those are the key things that we would like to develop

and like to build up and understand that we know can make very care full and correct

statements about saying what should be the size of the inter-leaver when there is low

Doppler how do how do I design that this is going to tell me how long I am going to stay

correlated  in  a  fading  channel  and  therefore,  my  inter-leaver  must  be  accordingly

designed my coding system must be designed if I do antenna diversity I know how to do

that.



So, basically all of the pieces now have to come together. So, the whole discussion about

w wide sense stationary uncorrelated scattering think of it as a jigsaw puzzle each day or

you gone to get a few pieces you got to put them all together and then finally, you see the

now the grand painting and you say oh everything sort of falls in to place. So, we have

done few pieces you need to fill in the rest in the next lectures.

Thank you.


