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Good morning we will begin with a quick summary of lecturer number 22, but before

that before I begin let me just sort of highlight the items that we will be covering in

today's  lecture.  We  will  be  looking  at  another  pdf  which  characterizes  the  channel

characteristics  of  that  we observe  in  wireless  channels  it  is  called  the  Nakagami-m,

unlike the others where we took the theoretical model and then derived the statistical

model this was based on looking at experimental data and fitting it to the pdf.

(Refer Slide Time: 00:37)

So, basic this is a experimental base experiment based derivation, but it fits very nicely

with  the  Rayleigh  and  Ricean  type  of  type  of  statistics.  So,  we  will  look  at  the

Nakagami-m distribution. We will look at the use of a tool that you are probably familiar

with from your study in probability theory that is the moment generating function. We

have a very specific and a very important role for a MGF and we will just highlight that

and explain why it is a very useful tool when we are looking at the BER analysis of

modulation schemes in the context of a wireless channels, application of MGF will be



one of the things that we. Along the way we will just make a comment about the bit error

rate of GMSK because that is something that we use quite extensively and we just show

that whatever tools that we have developed are sufficient for us to get the BER of GMS

case well. 

Probably  the  most  important  concept  that  we  need  to  build  on  and  develop  in  our

understanding  of  wireless  channels  it  is  called  the  WSS  US  model  it  stands  for  2

components  WSS  stands  for  wide  sense  stationary,  the  second  one  stands  for

uncorrelated scattering. And there are this basically describes the behaviour of a wireless

channel particularly the ones that we will encounter. So, WSS US model is probably the

most important concept because it links the time and frequency domain characterization

of the fading channel, today we will just get an introduction to it and build on it in next

lecture. So, that is our goal for today. Let me begin with a quick summary of the points

that we have mentioned so far.

(Refer Slide Time: 02:28)

So, I know I am repeating this multiple times, but it is for a very specific purpose. Fading

channel we talk about an instantaneous SNR, very important that we keep that all always

in mind instantaneous SNR. The signal is fluctuating I can set a nominal level E b by and

naught, but the actual the what I am actually going to be seeing it will going to be alpha

squared E b by N naught. So, that is a very important element and we denote this as

gamma. So, the ones in red are the random variables, blue is it is constant. So, then we



say that this is expected value of let me keep consistent with the notation that it is the

expected  value  of  a  gamma  which  is  a  random  variable,  but  that  is  itself  for  the

constants. So, uppercase gamma.

So, when we wanted to get the BER in fading. So, BER in fading and again notice I have

not specified that is BPSK, 16; QPSK or 16 qam. Any modulation scheme characterizes

as Rayleigh fading. So, far we have looked at that primarily, but it can be generalized to

any fading just in one step we will we will characterize that. So, any modulation scheme

in the presence of fading can be written as 0 to infinity, probability of error as a function

of gamma this is the performance in AWGN and multiplied by the distribution of the

SNR in that particular  environment.  So, this  is  a very useful  very powerful equation

which will be your starting point for any modulation scheme, any type of fading, what

are the 2 things you will ask for? The first thing you will ask for is the performance in

AWGN, performance in AWGN where you have a fixed SNR.

So, probability of error in AWGN as a function of gamma you will ask for. Second you

will say that gamma is not a fixed number anymore because of fading I need to know the

statistics whatever it is Rayleigh Ricean Nakagami does not matter, give me the pdf of

gamma. So, that is f gamma of gamma once you have those 2 you are you are able to get

the representation in any fading system, any fading environment. So, the Rayleigh fading

specifically is what we have focused on and we will continue to focus on that is the most

important one because we are working in environments where there is non line of sight.

So, under this assumption again this is a very important result always keep this in your

mind that we are dealing with an exponential pdf gamma greater than or equal to 0. So,

this enabled us to get the BER expressions for the different modulation schemes I will

not repeat that, just show you the slide from yesterday, basically the modulation schemes

that probably are of a lot of interest to us.



(Refer Slide Time: 05:45)

BPSK, QPSK and add differential BPSK, the others not as important, but it gives us a

complete characterization that is helpful for us and whenever there is a Q function we

also said that there is an approximation that is available to us, there is an upper bound

which is given by 1 by root 2 pi e power minus Z squared by 2 divided by Z and we

found that that is a good approximation under high SNR or large values of Z. And again

it is a good way to get a new quick field for what the numbers are. After this we had

looked at the derivation of Ricean fading.

(Refer Slide Time: 06:35)



So, we looked at the case where X and Y are IID Gaussian no longer 0 mean, but with

means m 1 and m 2 which basically gave us this set of equations which are very very

useful for us to always keep in mind, this set of equations which says expected value of

X, expected value of Y and the variances and the relationship with the variances. So, this

leads us to expected value of v squared the mean of the power of the received signal that

is given by 2 sigma squared plus m 1 squared plus m 2 squared.

Now, in case you are following along in Molisch, he calls this as A squared, A squared is

what is used more widely. So, I have used A squared in case you are reading do not get

confused, he has used A squared instead of S. So, this then we described that there is a

factor that describes the pdf call the rice factor ratio of S squared to 2 sigma squared it

can be more intuitively visualized as the power in the line of sight components, in the

power in the non line of sight component usually expressed in dB special case would be

when S is equal to 0 which means K is equal to 0 then we get the Rayleigh distribution.

(Refer Slide Time: 08:05)

And the expression for the Ricean pdf is given here I naught being a Bessel, a special

case of a Bessel function. So, that it is our broad classification of understanding.



(Refer Slide Time: 08:23)

We said that what is the intuitive understanding of the Ricean channel the pdf moves to

the right what that tells  me is that,  what that tells  us is that the likelihood of higher

amplitudes is higher. So, this is a good thing for us and as the rice factor increases then

we  will  see  more  and  more  the  channel  becoming  you  know having  higher,  larger

amplitudes. Again this has to be interpreted the best way is if you actually generate it

through a MATLAB plot  what  are  the assumptions  are  we that  we are making with

respect to the S squared, what is the assumption with respect to sigma squared. So, again

we will give this as a simple MATLAB exercise.

So, you can think about you know is the scaling ride why is this shifting to the left, but

notice that the centre  is now moving towards where your line of sight component is

going  to  contribute  the  maximum power.  So,  it  is  variation  about  the  power  that  is

contributed by the line of sight compounds. So, as the line of sight component increases

you will find that the curve shifts to the right and as the line of sight component becomes

more dominant what you will see that is the fluctuations start to reduce you know around

that. So, again as you play with this generation of these plots you will have there is a lot

that you can learn, so I again this is just given you a set of samples of that.



(Refer Slide Time: 09:53)

The actual impact is very much seen when you look at it in the time domain, again we

will have an exercise to generate this in MATLAB. This is a Rayleigh channel, notice the

Y axis very important it is in dB you have fluctuations from 0 dB to 20 minus 25 or

minus 30 dB significant level of fluctuation. As you increase the rice factor noticed that

the fluctuations are reducing. This can also be seen in the pdf where you will find that the

dominant part is going to play an important role and any fluctuations about that you

know in the on a large scale looks you know very, does not look like as a its going to be a

threat in terms of BER it is also good because it tells you that an amount of margin that

you must allow for small scale fading this is small scale fading is now much significantly

reduced because the level of fluctuations are not as you would see in a Rayleigh fading

channel.



(Refer Slide Time: 10:52)

I have asked you a recommended Molisch chapter 5 as a reading assignment, please do

take it up it is a very insightful. It is a very insightful chapter. 

One of the things that we will  not necessarily spend time deriving is the cumulative

distribution function for the rice pdf and of course, since the rice pdf depends on the

value of K the the cdf will also depend on k. So, basically you will not get a single cdf,

but you will get a family of cdfs for the different values of K. Let me just give you an

observation. Again the more as you read it and as you if you want to actually generate it

you will find that it is a very useful interpretation. So, K going closer to 0; that means,

your closer to Rayleigh that is the red graph and if you remember when we did the cdf of

the Rayleigh distribution we said that on a log log scale it will look very linear and this is

a very, it is very similar to Rayleigh distribution. So, what that tells us is that there is a

fairly reasonable probability that you will get very low values of amplitude that is what

happens when you have a deep fade. So, this is where the problem happens with the

Rayleigh distribution. 

Now again for K is equal to 0.3 it looks almost like Rayleigh and may be really it is good

idea to actually plot the Rayleigh distribution, you will find that the Rayleigh is slightly

worst that will be you know slightly worse than the red graph. Then you go to something

which is mildly a line of sight 3 dB its better than Rayleigh, but it is not substantially

different, but when you start to introduce a strong align of sight component notice that



the likelihood of low values of received signal envelope or power does not matter both

will give you the same interpretation is almost 0 because the you know your cdf starts at

a reasonably high value which is centered around the mean received signal power.

So, you can see that the cdf is very steep, cdf being very steep means what is it? Less

than that value not possible above that value always guarantee basically your signal will

be in that small range. So, that is a good interpretation of what the Rayleigh channel does

and its interpretation. Now what was the assumption that we made about the phase of

Rayleigh fading channel coefficient? 

Student: (Refer Time: 13:25).

Uniformly distributed, now what would is your expectation that would happened to the

phase when you start seeing a Ricean distribution, does it still stay uniform what is your

expectation?

So, basically think of it like this you have got signals coming from all directions these

signals are coming from different directions are you know going up and down based on

the fading and there is one line of sight component which is not changing. What is the

expectation?  It  obviously,  will  get  up perturbed from a  uniform distribution  it  is  no

longer going to be uniform. It is going to be more or less you are going to going to see

that constant line of sight component present being present.

(Refer Slide Time: 14:18)



So, here again it is very insightful for us to look at the different distributions. So, A equal

to 0 remember A is Molisch’s notation for our X squared, A equal to 0 is Rayleigh notice

that graph is straight line it is a flat phase from minus pi to pi. Then as you increase the

value of A, the line of sight component he has taken the line of sight component to have

0 phase, basically if you are chosen it to be 30 degrees the peak will have occur around

30 degrees. So, he has chosen it to be 0. Notice that you start to see when A is equal to 1

a slight bump around 0 phase.

Because  that  means,  that  that  component  is  starting  to  become more  dominant  with

respect to the others there is yes presence of signal in the other angles as well. Now as

you go to equal a to 3 you will notice that the peak becomes a little bit more sharp and as

you go to a equal to 10 you get much much sharper that is more dominant than the other

phase angles that are present in your system. Now what is the value will be go back to

this expression. What is the value of K that K equal to 0 gives me Rayleigh, what gives

me AWGN?

Student: (Refer Time: 15:24).

K is equal to infinity.  So, basically A equal to infinity will mean, K equal to infinity

means  will  be  more  or  less  like  a  straight  line,  the  fluctuations  of  the  Rayleigh

distribution is no long there, cdf does not make sense because there is no statistical part

and this one will become a straight line because basically all your energy is concentrated

around the single line of the component which is got a constant phase.

So, again the entire  spectrum of the distribution and the statistics that we observe in

Ricean Rayleigh, Rayleigh being a special case of the Ricean I hope is something that

you are comfortable with that is one of the important thing that we need to take away

from this discussion. 

So, today’s material we will start with the Nakagami-m distribution.



(Refer Slide Time: 16:27)

And that is as I mentioned it  comes from the world of experimental  characterization

Nakagami-m, Nakagami-m pdf distribution. Now where did this actually originate. So,

people try to do measurements in different kinds of channels and then try to characterize

its saying its Rayleigh or Ricean with a certain value of the rice factor. It was found that

certain environments did not match Ricean or Rayleigh. So, did not match did not match

Ricean statistics for any value of K, when we say that it did not match it did not give a

good enough fit to the value of K. Notice that I do not need to say Rayleigh because K

equal to, K equal to 1 is a K equal to 0 is a is Rayleigh. So, Rayleigh is the special case

of Ricean. So, the observed statistics did not quite fit the Ricean statistics. So, they came

up with a distribution  which seems to have a  framework very similar  to  the Ricean

distribution, but somewhat different and again we want to be able to capture that.

So, so far the options that we had were no line of sight means we said you take Rayleigh,

that is your Rayleigh distribution and with line of sight component it was Ricean we had

to specify the value of K and now third option is being is being given to us. So, think of

it as the same expression that we have for Rayleigh Ricean. So, v is equal to square root

of X squared plus Y squared and the Nakagami distribution does not make any specific

assumptions on the mean, but it makes assumptions on the received power levels. So, it

says that if I introduce something called like the K parameter something called the fading

figure which is a characterization of the statistics and we define the following - upper

case omega is equal to expected of v squared mean received mean signal power and m is



defined involving the fourth power again we are trying to fit a statistics to observe data.

So, the exact origins of this formulation not documented, but the results are very very

useful. So, expected value of v squared minus v whole square omega squared means it is

a square of the square value.

So,  basically  it  is  like  doing  some  fourth  order  statistic.  So,  m  is  a  fading  it  is  a

dimensionless quantity. Now this gives us a measure that can then be used to characterize

the distribution of the envelope and given m we can obtain the Nakagami that is why it is

called Nakagami-m distribution, it depends on the value of m it says Nakagami-m it says

fv of v that is the pdf of the received signal envelope under Nakagami-m distribution is

given by 2 times gamma of m, this is not related to SNR and that is one of the reasons

why  we  use  a  different  value  this  is  the  gamma  function,  this  is  the  Euler  gamma

function.

Again, all of the expressions are given in the books, but it is good for us to just write it

down. So, we get a comfort level with that. So, let me complete the pdf, m divided by

omega raise to the power m v power 2 m minus 1 e power minus m v squared by omega.

So, and it depends on the value of m and m has to be greater than or equal to one-half

and basically this is the characterization that we have and of course, v will be greater

than or equal to 0. So, this is the Nakagami-m distribution. Let us just write down a few

more points that are helpful for us to get the complete picture. The Euler gamma function

gamma of m we have come across that in some of the digital communications if m minus

1 factor basically it is a factorial representation if m is an integer, it is also defined for

non integer value, so we have to be a little bit careful when they are non integers, but

most of the times we will try to find integer values, but if it is non integer its good for us

to know the definition gamma of z is given as an integral 0 through infinity e power

minus t, t power z minus 1 0 dt for z greater than 0 and that is what we are going to be

looking at. Basically looking at some the fading figure by the way this call the fading

figure which is greater than or equal to half positive quantity greater than or equal to half

and that is what we have and this is the basic definition of that. Now, first thing always

few sanity checks.

Let us take a look at the special case if I set m equal to 1, I would like to derive look at

the distribution that  is  a valid  fading figure f  v of v is  given by times gamma of 1,

gamma of 1 is 0 factorial which is one the next term m is equal to 1 divided by omega



raise to the power 1 and omega is equal to expected value of v squared and so omega is

equal to expected value of v squared. So, that will be equal to 2 sigma squared 0 mean

Gaussians, 2 sigma squared into v times e power minus v squared by 2 sigma squared.

So, basically if you rewrite this, this will come out to be v divided by sigma squared e

power minus v squared by 2 sigma squared which is Rayleigh. This is a special case of a

really distribution. 

Now 2 purposes for making this  observation – one is  to show that  the Nakagami-m

distribution also covers the entire span going from Rayleigh all the way to, all the way to

AWGN channels that is one aspect and you will find that like the fading fact, like the

Ricean factor the feeding figure also has a range of values it covers the whole spectrum

and as you increase the value of m you will find that you start to get more and more

behaviour  like  the  Ricean.  So,  the  Nakagami-m and  the  Ricean  are  like  equivalent

representations, but there is a very very important difference. What is the worst case that

you can get in Ricean fading, worst case Rayleigh?

Student: (Refer Time: 24:44).

Notice that is not yet the worst case for Nakagami-m because m equal to 1 you can

actually get certain environments which look worst than Ricean you may asking is no

there can I is it possible it was already though Ricean was bad enough, but yes there are

certain  environments  where  the  propagation  is  worse  than  Ricean  and  even  those

scenarios are actually captured by the Nakagami-m.



(Refer Slide Time: 25:19)

Now you may or may not encounter them, but it is good to know. So, let us build on this

little bit more. So, summary Nakagami-m is a very useful form you have to specify the

value of m and then the pdf is specified m equal to 1 is Rayleigh, m greater than 1 is

milder than Rayleigh that is less severe than Rayleigh and there are scenarios where m is

less than one which is more severe.

So, just keep that characterization in your mind before it is good to know that this is a

family of functions. Another important thing that we probably need to make note of is

look at the pdf of the Nakagami-m distribution has no Bessel functions. So, actually is

easier when you want to do integration. So, that is the second reason why we prefer the

Nakagami-m, but from understanding point of view Ricean is very intuitive because it is

says that the power of the line of sight component, the non line of sight components.

So,  the question that  arises  is,  is  there  a  way to  map the  Ricean distribution  to  the

Nakagami-m and it turns out that yes there is a way to do that. So, Nakagami-m can be

mapped to the Ricean pdf, Ricean pdf for that we have to choose the following we have

to choose the value of m, we have to choose the value of omega basically that is the and

this will map to a particular value of K. So, basically on the Nakagami-m side we have to

specify something on the Ricean side we have to specify and then we have to make the

relationship. So, the relationship I will give you it is derived in the literature, but against



more important for us know that it can be mapped. So, m is equal to K plus 1 whole

squared divided by 2 K plus 1.

So, if I gave you a value of K and said my channel a behaves like a Ricean channel with

this particular value of K not a problem you will just do a simple calculation to get the

value of m and then substitute it and do all of your competitions of the BER using the

value of m because that is easier for us in terms of the integration. So, if you can relate m

to K you should be able to relate K to m please verify that if this is given to us that the

inverse relationship is given by 2 square root of m squared minus m divided by m minus

square root of m squared minus m. Again its it just to say that you can go from one map

one domain to the other, but you cannot get a mapping for those functions which have

the fading efficient m less than 1. So, the please make sure that fading figure less than 1

because the those are the ones which are very unique to the Nakagami-m distribution, but

again  this  is  something  that  we  may  encounter  in  experiment  using  when  you  do

experiments.

So, we have the following tools available to us we can characterize the environment very

often what we have encounter is Rayleigh distributed. So, the SNR distribution f gamma

of gamma is given by an exponential distribution and other wise if it is not there is a line

of sight component it will be Rayleigh, Rayleigh means that it will be a Ricean it will

have  a  rice  factor  once  you  get  the  rice  factor  you  can  map  it  to  the  Nakagami-m

parameter and then that says that there is a corresponding SNR in the Nakagami-m. So,

what is the pdf of the SNR in a Nakagami-m environment? That is very important to us

and this is something that we will derive as part of the assignment, but let me just give

you that there is a expression that is easy for us to validate and that is given by m by

omega raised to the power m gamma power m minus 1 divided by gamma power m e

power minus m gamma by omega and we can go through and validate that gamma what

we have used in the Rayleigh environment is the same as omega. So, that is easy for us

to verify and you substitute m equal to one we should get back the Rayleigh distribution,

but this is the SNR distribution in an Nakagami-m distribution in a environment.

So, if you were to ask, if you were to asked to compute the probability of bit error. So, let

us go back to the first equation the probability of error of gamma that is AWGN, now for

the  second  term  if  it  is  Nakagami-m  you  will  now  substitute  the  corresponding

Nakagami-m pdf and then complete your integration, so that you will get the result that



is of interest to us. So, what we have built around, a built around is a different tails that

help us to get a complete understanding in terms of insight in terms of the ability to

characterize using analytical tools and then and work with the different environment.

(Refer Slide Time: 31:21)

We now we will move into the second part of what I had mentioned today as the moment

generating functions usually denoted by the acronym MGF again this is a tool that most

students are quite familiar with from the mathematics concept. May be you will when

you are studying MGF you will thought you know why is, why even study this is there

any use for MGF today we will answer that question its actually very good that you have

studied MGF before because we have a lot of used for that. So, let me start with the basic

definition and then build on that. I will as always I just give you enough information to

understand the concept apply it and then go back to give you the complete a definition.



(Refer Slide Time: 32:08)

So, let me just this is MGF, the definition of MGF is defined I mean MGF is by this

defined for a pdf. So, let us assume that we are given a random variable X and the pdf of.

So, the pdf of a random variable X is f X of x then the moment generating function

different  books  used  different  notations  I  would  like  to  use  psi  as  my  notation  for

moment generating function. Subscript tells you the random variable and it is usually

given in terms of parameter S and you may wonder you know does this mean you are

doing Laplace transform the answer is yes it is kind of a Laplace transform yeah I am

sure most of you see many of you not doing, but we have to interpret it basically it is just

a variable. This is given as minus infinity to infinity and over the range of the random

variable X f X of x e of sx dx it is a definition of a moment generating function.

Now, couple of key interpretations again, the first interpretation is from the mathematics

for point of you, the second one is the electrical engineering point of it says I want to

look  at  it  as  a  Laplace  transform.  The  first  one  is  a  mathematical  interpretation

mathematical  interpretation  says you took some function  of X multiplied  it  with the

probability distribution of X and then integrated it. So, what did you do? I computed the

expected  value  that  is  a  mathematical  expression  e  power  sx.  So,  the  mathematics

interpretation of this equation says that you calculated the expected value of the function

e  of  sx.  The electrical  engineering  definitions  says  well  you almost  did  the  Laplace

transform except the sign was wrong.



So, basically  if  you do replace x with minus s then you have actually  computed the

Laplace transform, Laplace transform of f x. Now which of these is more useful both are

useful, we will use both of them. 

The good thing is that the moment generating functions have been already computed for

the pdfs that we will encounter. So, I would encourage you that is why I have given you

Andrea Goldsmith book as a reference,  Goldsmith chapter  3 where you can find the

moment generating functions of the Rayleigh distribution can also find it for the Ricean

distribution it is a little bit tricky the Ricean distribution and you can also find it for the

Nakagami-m. So, it turns out that the distribution that we are interested in are already

characterized for us in terms of the Laplace transform of in terms of moment generating

function.

But before we even do that why even bother with the moment generating functions let

me give you an example and then show you why it is very powerful for us. So, we want

to look at the case of the Rayleigh distribution,  Rayleigh pdf the moment generating

function is what we are asked to evaluate f gamma of gamma is given by this is the pdf

of the SNR e power minus gamma by gamma, f gamma is greater than or equal to 0

otherwise. So, when I do the moment generating function I will write phi my subscript

will be gamma and it will be s, my limits of integration since it is the pdf is the nonzero

only for the in the range 0 to infinity,  0 to infinity,  1 over grammar e power minus

gamma by gamma that is the pdf, the pdf part and then I write down a e of gamma of s

gamma d gamma. Moment generating function of a Rayleigh distribution is given by this

1 over gamma is a constant integral 0 to infinity e power minus 1 by gamma minus s into

gamma d gamma.

Now, s can be in the complex plane. So, I am not necessary assumed to be to be real

valued. So, basically I have an integral of this form what is the condition for this integral

to converge, what is the condition for the integrand not to explore because the gamma

will go all the way to infinity.

Student: (Refer Time: 37:26) gamma.

The 1 by gamma minus S the real the real part must be.

Student: Less than 0.



Less than 0. So, must be.

Student: Greater than 0.

Greater than 0, ok you are paying attention. The real part of 1 by gamma minus S must

be greater than 0 which is the same as gamma is already a real quantity. So, real part of S

is less than 1 by gamma.

So, just a visualization this is a complex plane if this is 1 by gamma we are saying that

everywhere here we are that is sort of the region of convergence that we if you will. So,

in this region of convergence I get the expression 1 over 1 minus gamma S and that is the

moment generating function of the Rayleigh distribution again keeping in mind that there

is a r o c that we have to keep track of its not a problem.

So, let me just remove the clutter and write down the following. So, phi gamma of s for a

Rayleigh pdf, for Rayleigh pdf is given by 1 over 1 minus gamma s. So, the question is

what is the benefit of this we see in a minute. So, if I were to compute probability of

error of DBPSK in Rayleigh fading, Rayleigh fading please ret tell me expression it will

be 0 to infinity, the probability of error in AWGN will be half e power minus gamma am

I right that is the probability of error of DBPSK in AWGN. Then write down next it to

the pdf of the SNR, so the pdf of SNR will be f of gamma of gamma integrate with

respect to d gamma.

Now, side by side please write down the expression for the moment generating function

and then we are through this is 0 to infinity f gamma of gamma e power s gamma d

gamma and this we already know is 1 minus gamma s. So, the question is do I really

need to do the integral at all integrals very easy to do not that is because the reason is that

once I have this expression you can see that this is nothing, but the constant you pull it

out. Now look at what is within the bracket equation number 1 and equation number 2

compare  them you can confirm that  this  is  nothing,  but  phi  gamma of  s  where s  is

evaluated  at  minus  1,  now is  s  in  the  region  of  s  equal  to  minus  in  the  region  of

convergence yes because it is the left half plane including the j omega axis no problem.

So, this is where the.

So, now the important thing to note is you can change this f gamma of to anything even

Ricean no problem Ricean or Nakagami-m, does not matter at all as long as I know phi



gamma of s. Any distribution you tell me as long as you give me the moment generating

function I will give you the answer in one step I will just substitute the corresponding

value and we will get the answer that is of interest. So, this is why MGF is so useful

because it is very it helps us in terms of our ability to work with the different types of a

environments that we are looking at.

(Refer Slide Time: 41:49)

So, let me just move forward quickly to explain one more example this is an example not

related to MGF or the pdf it is something that reinforces what we have studied so far.

GMSK stands for Gaussian minimum shift keying. So, I will not expand it usually when

you specify Gaussian filter you must also specify the shape of the filter or the bandwidth

of the filters it is usually given in terms of a parameter call the BT the time bandwidth

product and BT 0.3 is the commonly used value, I will make a couple of statements

about GMSK BT 0.3. Again this is for you to just keep in mind when we come across it

later on we will talk about that BT 0.3 its comes under the family of what is called partial

response signaling, partial response signaling. What is partial response signaling? Partial

response what is full responsible signaling. If you know only if you full response you

will able to what is not full response becomes partial response full response.

Pulse shaping everyone is familiar with why did you pulse shaping to keep the spectrum

very compact, now once you have done the pulse shaping you have a symbol duration.

So, T s is your duration of the symbol that is you have the symbol rate 1 over the symbol



rate is the duration of a symbol. Now if your pulse shape, duration of the pulse duration

of pulse, so basically if I were to use a rectangular pulse 0 to T s that is full response, I

can do sinusoidal thing between 0 to 2 s that is also full response, this is full response

this is full response, if the duration of pulse is less than or equal to T s it comes under full

response.

Now, if I have a for some reason I have a pulse shape which exceeds T s let us say 0 to T

s it goes little bit outside of T s this becomes partial response, partial response what is the

penalty that I have I am paying for partial response, why do I do partial response first of

all to make the spectrum more compact, because more I have wider in time narrower in

frequency. So, it is more compact in terms of spectrum. So, the reason we even talk

about partial response is because of the benefits in terms of spectrum, but what does it do

in  the  time  domain.  It  already  introduces  ISI  at  the  transmitter  whether  the  channel

causes ISI or not your transmitter is caused. So, there is a transmit ISI.

Now, what will happen if you have ISI in the channel? That ISI in the transmitter will get

compounded by the ISI in the channel and you will get a composite ISI which you will

have to equalize even if you do not have seen the channel you still need an equalizer. So,

this one is requires an equalizer to get rid of the inter symbol interference that you have

introduced to the partial response. So, again we need not worry so much except make the

observation that complexity is going to go up, complexity is higher than if you did a full

response  system.  So,  that  is  all  that  we  need  to  understand  in  terms  of  the  partial

response. 

So, response signaling basically says its ISI is there in the transmitter for the purposes of

spectrum, complexity will be higher we will live with that, but now given that GMSK

BT 0.3 is a partial response signaling, the question is what is the probability of error of

the  GMSK.  People  have  characterize  this  and  I  have  said  it  can  be  very  closely

approximated by 1.4 gamma Q of 1.4 gamma. Notice that there were 2 Q functions will

take the BPSK case it was square root of 2 gamma. Now is GMSK is better than BPSK

or worst than BPSK. 

The way to look at it is if I were to specify a given BER level, given BER level that

corresponds to some SNR. So, basically from the Q function you can find out that 2

times gamma BPSK which is what that is what will give you that BER Q function that



will map to 1.4 times gamma GMSK right because the Q functions argument of the Q

functions map to the same BER value to for a given BER and if I want to satisfy it with

both BPSK and GMSK I must satisfy this condition. So, this clearly tells me that gamma

GMSK is higher than gamma BPSK. So, that is gamma BPSK plus 1.55 dB. So, it is a

slightly  worst  than  BPSK,  but  it  is  something  that  is  better  than  the  noncoherent

schemes. So, therefore, this is a useful candidate especially because the spectrum is very

compact. 

Now let us complete the discussion just one more observation that I will give you.

(Refer Slide Time: 47:29)

Now if I had the relationship for BPSK Q of 2 gamma that is in AWGN in fading we say

that this maps to one half of 1 minus square root of gamma divided by 1 plus gamma and

under  high  SNR  this  maps  to  1  over  4  gamma.  Now  without  re  doing  all  of  the

calculations can we get the expression for GMSK where GMSK is equal to square root

of beta gamma where beta is not true, but is equal to 1.4. So, we have already done a

case like this. So, basically what we would like to do is in this expression replace gamma

with beta by 2 gamma right. So, basically get it into the form, if I do this kind of scaling

where beta is the constant 2 is the constant, so there is no issue with that. Then in this

graph I would have to do the scaling gamma as beta by 2 gamma and then redo the

calculations we do not need to do the integration this will become one half of 1 minus

beta by 2 gamma under the root sin divided by 1 plus beta by 2 gamma. 



Again you can simplify that you can also verify the highest SNR approximation comes

out to be 1 by 2 beta gamma which is the same as 1 by 2.8 gamma. It is not as good as

asymptotically  it is not,  it  will  not touch the BPSK it will  always be shifted slightly

shifted, slightly worse, but it is a very good modulation for us to work with.

On the other hand the DBPSK the asymptotic value is 1 over 2 gamma, so which means

that  the  DBPSK  is  slightly  worse  than  GMSK  and  so  we  can  make  the  following

statement which I believe is correct, under assumptions. So, in Rayleigh fading Rayleigh

fading when there is no channel tracking errors the BER of BPSK is less than BER of

GMSK is less than BER of DBPSK and since I need equalization there is no question of

non coherent  detection  of  GMSK it  has  to  be  coherent.  So,  this  has  to  be  coherent

detection, this has to be coherent detection. So, again it is was a little bit of a detour, but

to tell you that the tools that we have developed are very broad and very useful. Now

combine the tools that we have developed with the moment generating function you have

all  the  tools  that  you  have  to  need  for  understanding  and  working  with  the  BER

expression.

So, what I would like you to do is a refresh your memories about the memory about the

MGF if you have recently studied it no problem, if you have not studied it recently look

it up in Proakis or any of the standard books we will use MGF in a some in a very clever

ways just to help us in understand and derive the bit error rate in fading environments.

With that we will then move to WSS US model in the next lecture.

Thank you.


