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Floating Point - Precision and Accuracy

Both  on  your  commercial  computations  like  E-commerce  and  also  scientific

computations and lot of you know data analytics etcetera, we use floating point

extensively right in all media applications for example, there is a need for using

floating point in a big way.

(Refer Slide Time: 00:24)

So, there when we use floating point as its I told you that this is not an infinite

arithmetic  space  when  you  look  at  systems  we  have  limitations  we  cannot

represent beyond something that is the range right; if you take twos compliment

arithmetic with n bits you can only you know the range is minus 2 power n minus

1 to plus 2 power n minus n minus 1 we cannot go beyond that range.



So, because of this finite representation what are the problems that you land it? If you are

just looked at we know integer arithmetic, the problems are very simple. So, if the range if I

give you n bit and the range is between minus 2 power n minus 1 to plus 2 power n minus n

minus 1 either you go above that range or below that range. So, underflow and



overflow were the 2 things that you saw in integer arithmetic, but when we go to

floating point the thing becomes much little more complex.

So, let us understand that is a set of very nice examples, so these slide are made by

professor Shankar Balachandran is Intel now, but so, I am just borrowing that slides

some  excellent  slides  and  we  will  try  and  understand  especially  what  is  the

difference  between  things  like  what  is  precision,  what  is  accuracy  those  things

becomes very very important when we look at floating points a arithmetic. So, this is

a very very crucial aspect of this course and I hope we will learn that in the proper

prospective I will teach and you learn the proper perspective.

(Refer Slide Time: 02:11)

So,  these  are  the  references  for  this.  So,  Hennasy  and  Pattersons  books  on

computer organisation I triple E 754 standard then some web pages and Wikipedia.



(Refer Slide Time: 02:36)

Now let us start the lecture with what do we understand by the term accuracy what did

we  understand  by  term  precision.  Accuracy  and  precision  are  2  very  important

engineering metrics, what is accuracy how close is the measured value to the true value

that is what we mean by accuracy. What do you mean by precision? We keep doing an

experiment repeatedly how close are the results right if a experiment. So, if my results

are repeated if I repeat the experiments and I get almost the same result then I same

way arithmetic is precise right. So, accuracy means how close is the measured value to

the actual true value; precision is how close do repeated experiments yield similar result

results right. So, these are difference between accuracy and precision.

So, we need both accuracy and precision because we are run a programs say m times

every time I want the same answer, I do not want different answer and I run program in

machine one and I run it in another machine two I need to have the same answer correct. so

that is what I mean by a precise computing environment, and the answer that this computer

generation of whichever computer generates how close it  this to the actual value that is

called accuracy right; are you able to distinguish between these two?

Now there are four combinations of results possible, I will have a accurate result

and a precise result I will have an accurate result, but imprecise result. I could

have an inaccurate result, but precise in accurate and imprecise.





(Refer Slide Time: 04:40)

So, all  four combinations are possible;  now how so on I we will  now see some

experiments right I will put those experiments here you can go and check it out very

very simple programs, now you can check it out on your real system you can write

those c programs and compile and execute it see for yourself how each of these

four combinations are possible in floating point arithmetic and what sort of care we

take right; are you getting this? This is the difference between an precise accurate

fellow and a precise fellow, let us been shown shooting dots on the target right.

Now, what do you see on the left hand side, it is an accurate hit almost accurate

hit on all ground like we were very close to that whatever the middle red circle,

but it is imprecise. Different times I hit the dots are far off from each other, but on

the other hand when you see on the right hand side it is in accurate, we never

the dots never reach the central circle, but precise, right. So, this should have it

in mind I will I will give several analogies like that that we proceed. So, where

you should understand what is accuracy and what is precision and especially

when you start doing you know these are something switch.



(Refer Slide Time: 05:37)

Now, let us look at floating point representation right. So, before going to that what can

we do with in which if it is a unsigned, so I can represent anything from 0 to 2 power n

minus 1, if it is twos complement just minus 2 power minus 1 to 2 power n minus 1

minus 1, just once complement I can do minus 2 power n minus 1 plus 1 to 2 power n

minus 1 minus 1. So, these things we have seen a in your digital course and of course,

in your c s 100, but when you want to represent large number say for example, very big

one or very very small numbers or rationales irrationals transcendental like pi e right

then we need a different representation and that is why and that representation is very

crucial because it the next we some standard there are we can come out with infinite

trance for represent these numbers. So, there was a need for getting a standard and

that is why the; I triple E 754 standard came into place and we started off from that.



(Refer Slide Time: 06:58)

Now, what we will now discusses about the I triple e 754 standard? Now this is overall

the I triple E 754 standard. So, I want to what is this numbers 6.02 into 10 power 23,

right  this  is  have  a  grade  of  number.  So,  what  we  need  here,  we  need  a  sign,  a

magnitude then a mantissa, decimal point then exponent, and then a radix and base for

a exponent right. So, I need. So, I have an exponent I have whatever fraction there and

then I need a sign bit so for example, this 6.023 into 10 power 23 can be can be written

as 0.6023 into 10 power 24 it is a plus sign right. Similarly your 1.673 into 10 power

minus 724 can be written as 0.1673 to the power minus 23 and a sign here plus.

So, there is an exponent there is a mantissa or whatever the fraction and then a signed it,

this is the basic representation here, but we want to make this you know look. So, I cloud

have see why I say there are infinite base of representing this, I can represent it as 0.6023

into 10 power 24 or I could have even represent it as 6.023 into 10 power 23 or I could put

23 here I could 60.23 and put you know 22 here right. So, on right or I could put 0.062 023

in to 10 power 25, right. So, I want different ways of representing this. So, I need to have

some standard if to 2 computers start representing in 2 different ways.

What will happen is a program can never be portable across system. So, if I write a program

for say some in Intel machine then I cannot use it in say IBA machine, if I use run for IBA

machine I cannot use it as in some where some spark machine or the DC machine, right.



So, I need to have a common floating point representation so that I could



use it  I  can  port  my  programs.  So,  you  sell  E-commerce  program,  you  sell  E-

commerce software, you sell you know engineering computation software like MAC

lab etcetera,  etcetera right.  So,  we need we cannot  write different  softwares for

different architectures right we need right one architecture and compile it for different

machines, so that is why this standard has come out, right.

(Refer Slide Time: 09:49)

Now this is the I triple E 754 floating point format that there is one sign bit, this is a

single precision when you say float x right this is what you see that, is that 4 byte

representation. So, 23 bits 0 to 22, 23 bits are used for M that is the mantissa and

there are 23 8 bits are used for the exponent and one bit is used for the sign is that

fine right if S is actually 0 then it is positive, S is 1 then it is negative. So, sign bit is

very clear if I put 0 there is a positive number 1 is a negative number. Now how do

we store the exponent? We store the exponent in what we call as the 127 excess

127 format; whatever is the exponent you want you add 127 to it and store it right.

So, by that with the exponent is always a positive number then it is stored here.

So, if I have minus 120 suppose I am I am I want to store say 10 power minus 127, you

add 127 to it and store 0 here. So, your exponent value will go from 0 to 2 power 8 to 8

bits na 255 0 to 255 essentially you are storing from minus 127 to plus 127 right, plus

128. So, every time you add 127 to it and store it, right. So, always your exponent is



going to be a positive number exponent that is being stored here is a positive number,



you can store actual representation you can have negative exponents, but since you

add 127 it becomes a positive number, and then how do you get the fraction track this is

once and zeros. So, you make the fraction as 1.110 or whatever, you do not store that

one you store whatever is after that a decimal point. So, what would be the value of

this? So, suppose I am storing S E and M the value of this is minus 1 power S, right.

So, if S is 0 then it is 1, if it is a plus then f is 1 it is minus into 2 into E minus 127

because you have stored it in excess 127 format into whatever M here 1.M right. So,

whenever I get the binary. So, if I get point 0.00111 I will store it into say some 2

power 15, I will now make it as one point sorry 0.110 let me put I will make it as

1.011 and 3 right into 2 power 12, right, got this; and I will store 0.011 here I will

store point 0 sorry not point I  will  store 011 here and of course, 12 plus 127 as

stored 139 here and of course, I will store 0 here 011 is some 3 whatever. So, 139 in

139 I will store it in binary format am not converted it. So, when I want to retrieve it,

it is going to be minus 1 power 0 into 2 power 139 minus 127, 12 into this 1 comes

here  one  point  whatever  I  have  01  which  is  nothing,  but  this  are  you  able  to

appreciate this. So, the good thing is that exponent is always positive and mantissa

is normalised we use the word called normalized.

Normalized in the sense that I this is the un normalized value I normalization is essentially to

bring 1 1 here and one point something. So, to convert your whatever number you have got

into the form as one point something else, and the something else is stored in m one is not

stored right. So, one is implant here are you able to follow this yes

Student: how do we (Refer Time: 14:39).

Will come to that, so, M is the mantissa which is the magnitude of the number

normalized there is a hidden integer bit, integer bit 1 and of course, the actual

fraction is 1.M.



(Refer Slide Time: 14:53)

So, let us look at this. So, S is 0, S is 0 here, E is 124 and M is one point whatever this

whole thing. So, when we convert this part this is 0.15625 you see here this whole thing.

So, how do you convert  this minus 1 power 0 because into 2 power 124minus 127

which is minus 3 into 1.01 whatever; this is 2 power minus 3 into one point is it convert 0

1 from binary to decimal which is point 1.25 right. So, 1.25 divided by 8, because 2

power minus 3. So, this is 0.156, right. So, this is how 0.15625 will be represented right.

So, you have a 23 bit mantissa 8 bit exponent and a sign bit.

(Refer Slide Time: 15:56)



Now again, so this is again a negative number minus 1 power 1, and E is 133.

So, this is 2 power 6 and this 0.1101 whatever is one point this. So, this is now

currently minus 1110 whatever you see here into 2 power 6 right I just bring it

here, when you convert it this is minus 118.625.

(Refer Slide Time: 16:33)

This capacitive number with a positive exponent negative number can decimal.

So, I am just giving you 2 examples very straight forward. So, single precision I

can represent numbers like this, right.

But when I want something like this, right, so, when I want something as biggest this

right the single precision I can represent numbers like this, but if I want to have a you

know bigger numbers right as you see here then we going for a double precision. So,

how does the double precision work? It is 64 bits that is 8 bytes same [FL] no change

here, but except that this is 11 bit exponent 52 bit fraction and one sign bit. So, with 11

bit what we can do? We do an excess 1023 like what we did for excess 127 we can do

a excess 1023 right so that means, we should have a very big range here.

So,  interestingly  this  is  the  minimum number  and  maximum number  that  could  be

represent right now just minimum plus or minus 1.175 into 10 power minus 38 to plus or

minus 3.4 into 10 power 38, this is the range right that is the plus or minus here plus or

minus here and this is the. So, this is binary converted to decimal for a single precision.



So, really when I go for double precession this is this is minus 308. So, this is the range



in which we can represent yeah. So, so please note that my range comes at most 9

times in my exponent right when I go from single to double I increment it by nine

almost 9 times yeah 8 times right almost 8 times my exponent can increase 38 to

308 time minus 38 2 minus right. So, this is how floating and floating single precision

and double precision are actually represented and enough able to follow, right.

(Refer Slide Time: 19:08)

Now, these are some special values like you asked how is 0 represented. Your exponent is

0 your mantissa is 0 then the value is 0, one how do you represent? Your exponent is this

and your mantissa is 0.  So,  these 2 and there are numbers which we cannot basically

normalize at all it, is so small right. So, it is called small denormalized numbers. So, these

are all some large denormalized, the smallest and the largest right where I just can put one

one here largest is all once. So, if the exponent is 0 sort of this becomes a denormalized

number. A largest normalized number is off course this smallest larger normalized number is

this, you can you can represent infinity as this and if this is non zero then this is not a

number, many I cannot I cannot represent it is out of this range.

So, these are some special values that we need to keep in mind because there are some

numbers which we cannot normalize, because your exponent becomes much smaller than

that. So, those numbers we just we put the exponent as 0 and put that number here. So,

these are all  this is  smallest denormalized number and this is  the largest  denormalized



number, and I cannot express it as one point something into 2 power this because it exists



it is outside that 0 to 255 element in your exercise even in your excess form either below

or above right and similarly. So,  this is the largest  normalised number and smallest

normalized number, then I have a representation for infinity and a and something which

I cannot represent even denormailzed I cannot do then call it as a not a number right,

many times when you start doing floating point computation you will get NaN, what is

NaN right this is this is something that I cannot represent in this right.

So, this is 1, 2, 3, 4, 5, 6, 7, 8, this is for single precision of course, the same can be

extended for double precision, but you should understand that when I interpret a floating

point value if I interpret those 4 bytes that interpretation is not very straight forward there

are of course, if you have a non zero exponent and a non zero significant is not just if I

except these you know 1, 2, 3, 4, 5, 6, combinations that you have seeing here other

than  that  interpretation  is  what  I  have  told  in  the  previous  slide,  but  these  6

combinations you should very very clear. So, this is extremely important  here some

steps we need to keep in mind when we start looking at floating point representation.

(Refer Slide Time: 22:36)

So, now with representation itself we had these type of issues when we start computing

using floating point then we need to be much more careful. Now let us take this right we

need to be very careful in the sense what sort of accuracy and precision and range I need

right I need a bigger range or the small range. So, what sort of accuracy in precision I need



that. So, I have to go and pick one of the decision I need to take this whether should



I have a single precision or a double precision and that is also very crucial right and

when I scan and print floating point values what is actually there in the memory will

not come out, because your print f and scan f also does some jugglery which in

floating point when it is printing it that also you should be aware right. Print f it wants

to  print  the things it  does some bonding it  does some truncation even you are

scanning. So, your scan f and print f in your c; we should be bothered about the

ranges and accuracy in precision and based on that we should select what we want

to do and the results that you get right the results you get you cannot just relay on

print  f  and  scan f  for  the  results  right  then  you  may  your  computation  can  be

accurate,  but  the way it  present  it  can be different.  So,  we will  see some very

interesting examples. So, we will see all these cot asks.

(Refer Slide Time: 23:56)

So, first one thing if I have 32 bits, I can represent 2 power 32 as. So, how many floating

point  numbers  are  really  there  uncountable  right  this  cantors  argument  right  if  you

studied that sign if we are not its uncountable because between 0 and 1, between 0 and

0.1 between 0 and point not 1 and then again keep on right I could have infinite number

of floating point values a real life real number line is really a continues line integer line is

at this screed line so, but our representation is finite in size. So, I been repenting this I

will repeat it because I believe several times I will repeat once it will get into your mind.



(Refer Slide Time: 24:53)

So, now please note that the problem is here that I have infinite numbers infinite floating

point numbers, but I have only finite size to represent it and because of that what are

the things that are going to happen let us see some examples. What do you expect

here? I start with a equal to 1 is a long I is a long number that is fine into this is single

precision for I repeat it hundred times and every time I am going to subtract point not

one from this. So, what is the answer you will you should get 0 right; note that your

expected output is zero, but actually a printed output would be point not, not, not, not,

not, one, but the actual value that will be stored in your memory some 6.591 into 10

power minus 7 right. So, you can how do we see you take this a. So, this you can just

print this mathematically you calculate this is what you print you will get a real g c c you

will get something, something very close to this, but how will you find this.

Student: (Refer Time: 25:59).

Multiply a;

Student: (Refer Time: 26:00)

No, no, no, what you do is you cast a as a character pointer right and print those 4 bytes of

a and actually find out how what characters are there that as key character as key values

right you can cast it as character and print that four characters starting from that point right

you can give up a pointer and increment the pointer and print the contents and





from there you calculate exactly what it is you will find out that this is the value that is stored

in the system.  So,  first  thing is  mathematically  it  is  uncorrected incorrect,  but  what  the

computer actually computes this print f does not print that it is printing something else. So,

the print f itself has something to go and massage it and give you some answer right. So,

what you see as a print out as an answer is not actually what is stored in the memory and it

is not the actual mathematically what is stored in the memory is not the correct answer right

you see there are 2 levels of inconsistencies that creeping. Imagine that I take this answer I

put  it  into a file and some other time later  somebody takes this  answer  and do further

floating point computation already you have got a ironies results and that error still keeps up

and becomes a bigger error correct. So, this is something I do not know did you learned this

in your c s 100 what is this thought? Yes?

Student: (Refer Time: 27:46).

So a lot of redundancy, but still I will continue now. So, the error actually crept in

while we were subtracting, right. So, why because some of the intermediate values

they are not able to represent faithfully exactly, and then the error propagates.

(Refer Slide Time: 28:14)

But why the print statement printed it as point not, not, not, 1 because the printing

actually rounds it off. So, it says as you see here you see 1, 2, 3, 4, 5, 6, 7. So, this

0.06 actually became one. So, print f actually wrongs the value. So, these are I;





Student: Sir what do you mean by intermediate values.

Like 0.01, right, 1 minus point not 1 is point not 0.99, 0.98 right when I want to

represent 0.99 it will not be exactly 0.99 because of your 0.9.

Student: But in our example a 0.99 can be a (Refer Time: 28:55).

Faithfully it coming it will be some 0.999 you know something.

Student: 0 right.

No, non no, this is binary like yeah, yeah, I do not have a decimal number fine

binary it will yeah just write those.

(Refer Slide Time: 29:15)

Now let us see what will happen here. So, I am subtracting from a equal to 1 and

I am subtracting it 100 times and adding 1. So, the answer should be again 1.

So, the expected output is 1, now you want say one will say 1 plus delta. So,

actually the printed output is 1.

Student: (Refer Time: 29:40).

Because you expected 1 plus delta, but actually it comes 1 becomes a great, but the

actual value stored also 1. So, 2 negatives make a positive. So, the error in subtraction



got compensated by the error in addition. So, sometimes error hides each other.

So, they complement each other.

(Refer Slide Time: 30:08)

Error creeps in during addition now as it was in subtraction error propagates as

before, but one error cancels the other, but why printed as one because now it is

printing it faithfully.

(Refer Slide Time: 30:26)



So, please understand these are all the issues that we land up when we start 

doing these type of floating point propagation.



(Refer Slide Time: 30:27)

So, I  will  give you simple exercise lets repeat this previous experiments with

subtraction  of  10  we  needed  to  10  power  minus  2  right  minus  0.01,  do  it

thousand times with 10 power minus 3, 10 power minus 4, 10,000 times and

hundred thousand times, it is and correspondingly have the loop should be 10

power 3, 10 power 4 and 10 power 5, but actually you will see that the actual

value that will be there the actual value that will be there would be you know in

the  system  what  will  be  printed  is  this  for  the  first  experiment  that  is  just

subtraction, subtraction plus addition is always the error gets cancelled, right.

So, please see that smaller the value that is subtracted more the error like that is also

very important. So, when I; so, this is becoming 10 power minus 3 this the error was 10

power minus 6 here, it became 10 power minus 3 here, error was 0.00009 which is now

become 09.7 eight. So, some orders of magnitude the error has creeping. So, smaller

that I am going to subtract 1 minus 0.0000001 then the smaller the thing I subtract more

the error right are you able to see this and that error is growing exponentially, say here it

was in the seventh place 1 2 3 4 sixth place that is say 10 power 6, here it became 10

power minus 5, here it became 10 power minus 4, 10 power minus 3 every time it is

getting multiplied by 10. So, the error also basically grows exponentially and the values

are faithfully restored in every single case; that means, what when I subtract and then I

add then it is basically faithfully representation so; that means, the error is systematic



right. So, that something happening wrong in that subtraction exactly the opposite thing



happens in the addition to compensate for you. So, does it mean this error is

predictable this is some questions that we need to answer?

But just note here that error if I go and become more and more accurate right I want to

become more and more accurate by increasing by you know floating point value if  I

want to keep decrementing by say 10 power minus 5, minus 6 minus 7 then the amount

of  error  that  accumulates  becomes  exponentially,  it  increases  exponentially  that  is

something that we need to keep in mind when we do this in spite of all you are I triple E

754 standards ability right this is something that we need to very much keep in mind.

(Refer Slide Time: 33:29)

But what will happen if I do with 10 power minus 8, we have done till 10 power

minus 7 interestingly you will find that the printed value is one after subtraction

and one after addition also.

The very first subtraction and addition has no effect on a right if I go for 10 power minus

8. So, you can try the experiments with a starting at 0 subtract and bring and you 

will get lot more surprises here right are you able to follow this is very interesting.



(Refer Slide Time: 34:17)

So, let us go and one more little let us go for and redo with this double then actually we

will see actually you will see that the actual value is very very less very close to 0, right,

it is some 10 power minus 16 right where in the previous case it was 10 power minus 5

or 6 still the answer is ironies, but the error is far lesser, can still be problematic if the

error is accumulated 10 power 16 times then it actually becomes 1.

(Refer Slide Time: 34:30)



So, and when we print we also used percentage d here if you carefully see here

we have used percentage d g, which is the a double printing right. So, it actually

prints a wider range right in contrast to percentage f, right.

(Refer Slide Time: 35:04)

So, this is what we see when as 10 power minus 3 in double and note that here also my

error was minus 16 when I started with 10 power minus 3, but if we start decrementing 1

with 10 power minus 8 am getting an error which is 10 power minus 9, but again here

the  error  as  I  keep  decrementing  I  as  a  become more  and  more  accurate  in  my

computation my error actually increases exponentially. This 10 power minus 16 this is

hundred times that, this is again hundred times that this is again and then it becomes

hundred times and 10 times. So, it starts you see some exponential growth here.



(Refer Slide Time: 35:50)

So the last one. So, we will do a new set of experiments like you know we start

with 0 and do this what was I be at the end of this loop expected output is 100

right we start with 1 while b is greater than 0.0 do b equal to b minus 0.01 I plus

plus. So, the value value of I should be a 100 where the value of I you get would

be 101 right because 101 times I need to subtract actually make it less than 0.

(Refer Slide Time: 36:26)



If you repeat this with 10 power minus 3, 10 power minus 4 and you will actually find 

that is 1001, 1000 10000 and so on this is not going to be one million it is less than a



million here sorry less than a lakh here, very quickly it becomes 0 this is less

than a million here 10 million, 10 power minus 8 what would be it will be infinite

look right similar question.

(Refer Slide Time: 36:51)

Using double precision now I get much closer, right.

(Refer Slide Time: 36:57)



So, because of the floating points we had all these disasters because of these type of

computations, the patriot missile actually became non unpatriotic failed at 1991 there

was the time measured was in units of tenth of a second and it well chopped off at 24



bits. So, for hours the error was 0.34 seconds the scud travels at 1.6 kilometres. So,

it travelled more than half a kilometre away. So, I want to go and keep something

here it went something later and Ariane rocket 5 5 actually launched by ESA in this

European space association 1996 exploded 40 seconds after left off because the 64

bit float assigned to integer and the integer saturated; this also 500 dollar 500 million

dollar damage. So, that is why we call these types of error as a million dollar error.

(Refer Slide Time: 36:56)

So,  floating  point  calculations  are  tricky  you  can  you  need  to  do  extensive

checks, I triple E 754 also has inherent problems as we have seen this. So, you

have  to  write  your  own  libraries  when  you  do  floating  point  you  should  be

extremely careful in this experimentations.

Thank you very much.


