
Computer Organization and Architecture
Prof. V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture – 07
(Part – II)

Programming using X86 ISA - Addressing Modes

Now when we come to exit, now we do a division.

(Refer Slide Time: 00:27)

Now I say div ECX right; div ECX because b is stored in a b is mapped on to ECX div

ECX now what are we done. So, we have only given whatever the denominator here

where is the numerator? Where is EAX is you have to do EAX by ECX right, EAX is

storing a, ECX is storing b I should do EAX by ECX. But here, I do not do div EAX by

ECX, because div is a complex instruction always the numerator will be in the EAX

resistor right div is a complex instruction. So, I do not explicitly give two different

operators for division whenever I want to do division right the numerator will should be in

the EAX resistor, I should I will only specify the denominator able to see that fine.

Why you should ask Intel, but this is how it is the set the many reasons for why it is

should it be there. So, this address addressing mode one minute, this addressing mode

where I am not telling explicitly where the numerator should; if I want to do division there

are two operands that are necessary one is the numerator another is the

denominator, but the numerator I do not explicitly state that this is the numerator.

So, this addressing mode is called implicit addressing mode right implicit addressing

mode. So, we are already seen three addressing modes what are that; immediate

addressing mode where the value of the operand is available with the instruction like

move EAX 0 x 0 the 0 x 0 is a immediate operand, then we have seen a resistor

addressing mode where we use a resistor as a destination or source then we are

now we are seeing what is called an implicit addressing mode, where you know the

thing is hidden you do not write it its implicit EAX being a numerator is implicit.

Now, I do div EAX by ECX. Now the result of this where will the result of this gets

stored? See if you say move EAX comma 0, x 0 the result is basically EAX

getting initialized to 0. Move ECX comma 0 x y the result is ECX gets initialized

to 5; increment EAX the result is stored back in EAX itself where the source and

destination operand are same, but if I say div ECX where will it be store? The

answer will be stored in two resistors namely EAX and EDX. EAX will store; you

know the quotient sorry the quotient and EDX will store the remainder. So, when

we do integer division the quotient comes out and I can also have a remainder.

So, EAX will store the quotient and EDX can store the remainder.

Student: (Refer Time: 03:50).

Right, so now, what I am saying that once I do div ECX, your numerator is lost the

original numerator is lost the original numerator should be 10 right that is lost

correct; now instead I will store the quotient and here. So, you get EDX in this case

when I do 10 by 5 your EAX will be 2 and EDX will become 0. Now you move the

content of EAX into some memory location which I give by 0 x b 1000, you move the

content of EDX into another memory location say give it as 0 x b 1004.

So, 0 x b 1000 is an address in the memory 0 x b 0 0 4 is an address in the memory.

So, I go and store the value of EAX and b 1000 and the value of the remainder in b

1004 correct. So, what is this addressing mode, this is called memory addressing right.

So, now, we have seen four addressing modes immediate, resistor, implicit and now

memory addressing correct are you able to follow yes or no; why are you respiring yes

man say yes: so this addressing again memory addressing.

Student: (Refer Time: 05:20).

This a memory direct addressing because I give the address directly there to which

memory I will location should I write to as a 0 x b 1000, I give the address directly and I

put those two square brackets which is very important which says that I am writing into

that memory right. So, this is called memory direct addressing wait you ask some doubt.

Student: Sir, are we able to see c is equal to b by a (Refer Time: 05:50).

C equal to b by a.

Student: Yeah.

It is very simple right move b should be in EAX and say yes.

Student: Sir, instruction is executed the value of EAX can be changed.

Yeah.

Student: So, if we have to use that value (Refer Time: 06:08).

Again that is a problem you have to be careful. So, that is why I said no general

purpose resistors are scratch patch. So, once you scratch on it you through it off

suddenly what I want to get it.

Student: (Refer Time: 06:22).

So, you should be careful while compilation what if.

Student: (Refer Time: 06:28).

After c equal to a by b, c equal to b by a, so that is why we have no EAX, ECX

EDX EBX and all we have right. So, in another resistor you use.

Student: (Refer Time: 06:45).

EBX, EDX, and all other.

Student: (Refer Time: 06:50).

Then you put it in memory and get it back again, that is called resistance fielding

I will talk about it good. Now let me ask you a very interesting question why b

1000 then b 1004.

Student: (Refer Time: 07:05).

Why b 1000 and then b 1004 their addresses.

Student: (Refer Time: 07:11).

Yes.

Student: (Refer Time: 07:14).

Size of: so we are talking of integer. So, in every memory a location I can store only one

byte. So, this is called. So, x 86 has what we call as a byte addressable memory.

(Refer Slide Time: 07:28)

Byte addressable memory; that means, for every byte I have an address. So, if I

have a byte addressable memory then integer is 4 bytes in normal compilers

today. So, at least the compiler I am using here is at 4 byte integer. So, b 1000, b

1001, b 10002, b 1003 will store the quotient b 1004, b 1005, b 1006, b 1007 will

store the denominator sorry remainder.

Student: Sir, the second instruction in actually b executed when we on this 0 (Refer

Time: 08:23).

Which second instruction?

Student: When we do c equals a by b it is unnecessary to store the remainder right.

But in this case it will store right you can if you want you can.

Student: But.

In these days you do not need it, but if you can you want you can. So, let me say some.

Student: (Refer Time: 08:48).

Some m; some m.

Student: (Refer Time: 08:50).

It depends no, what I am saying is that EDX will have the remainder.

Student: (Refer Time: 08:58) actual protocol is followed right like emergency.

This last instruction may not be dumped by the company. So, this is just an attention

seeking for you to tell you that remainder also is generated and importantly your EDX

gets screwed, it gets changed right if you used EDX for some value and you go and

execute div ECX these two resistors get completely changed that is the most important

point that we are right. So, it is not that the source operand is implicit even the

destination operands can be also be implicit right; the source was EAX that was implicit

the destination is EDX that is also implicit here, but interestingly the denominator is not

changing right; why? No I could have made the denominator store the remainder no.

Student: (Refer Time: 09:58).

Why poor some other totally uninvolved resistors why I am going.

Student: (Refer Time: 10:03) because 0 integer (Refer Time: 10:05). We use it

again for division later it becomes 0.

No what this source across and.

Student: (Refer Time: 10:16) we are getting the same resisters all the time right (Refer

Time: 10:18) can be everything.

Right, if I say div EDX, EDX will change anyway right that is the question. So, it

need not be ECX always, but the two operands where I store that, that has to be

told in advance a when I execute div EAX and EDX will change right and if you

use EDX as your denominator anyway it goes for your toss right do you

understand this. So, this is this is. So, slowly this is a complex instruction set

computer that complexity slowly will try and understand.

Student: Sir, when an addressing program is (Refer Time: 11:08).

This is an actual C program.

Student: Sir, (Refer Time: 11:12) are the value stored in the memory or (Refer Time:

11:15).

It all depends if you say a equal to 0, b equal to 5 and all right then it will compile

like this.

Student: (Refer Time: 11:24).

Then you mapped on to a, if you want to here also I am reusing a right I am

reusing a several times in that.

Student: No after that (Refer Time: 11:35).

After that you want to then you have to if you can, if you want to use reuse a

after division then are this point you have to move a.

Student: To some memory.

To some memory location and some other register.

Student: (Refer Time: 11:51).

Right.

Student: (Refer Time: 11:53).

Yeah.

Student: Sir, can we 0 as b 1000 for instead of EAX (Refer Time: 11:58) some

constant for division what is the parameter.

Division you can I you can put div 0 within bracket 0 x b 1000.

Student: (Refer Time: 12:09) sir, resistor (Refer Time: 12:10).

We can give a denominator as a memory operand we can I do not know. So,

that is what you can go to the Intel manual.

Student: (Refer Time: 12:19) working about constant (Refer Time: 12:21).

I can give a constant as denominator. So, all these things you can see now this

question has come up like.

(Refer Slide Time: 12:42)

Let us go I will just finish this slide and introduce you to the manual specifically with the

div instruction. Manual is here, these are all the jump instruction the conditional jump

instructions right JO jump on over flow, jump if there is no over flow, jump if the sign bit

is one, jump is the sign bit is not is 0, jump when equal, jump if 0, both means the same.

JE and J is the task same jump when not equal to is equal to jump not in not 0 jump if

below, jump if not above or equal jump if carry, jump if not below, jump if above or equal

jump if not carry, jump if below or equal jump if not above, jump if above jump if

not below or equal, jump if less jump if not greater or equal all these things a very quiet

easy JLE jump if less than or equal to, JNG jump if not grater both means same.

So, all these acronyms you can use right these are all assembly language

instruction and these should be followed by n arithmetic instruction the no this

should follow an arithmetic instruction and this will touch those flags. So, what

are all those flags OF is the overflow flag, SF is the sign flag, ZF is the 0 flag CF

is the carry flag and PF is a parity flag you know what is parity.

(Refer Slide Time: 14:10)

Student: (Refer Time: 14:11).

Odd, odd, even parity if in a byte if you have even number of ones then C 1

parity, odd number of ones it is a odd parity. So, if this will check parity flag is for

even parity; that means, it will be set to one if the result is even parity arrays are

parity and then we have some conditional resistors CX; if the CX is 0 ECX is 0.

So, all these different types of jump will jump conditional jump instructions are

there; and this you can use these combinations to model any loop any type of

condition within a loop. So, that is very very important.

(Refer Slide Time: 14:51)

Now this is another snippet where a is 1 and the ECX is 5, but I go and do I do a while

rather than a while loop; that means, surely it will be executed at once. So, I just do

increment EAX then I compare, then if it is non 0 I go up if it is 0 I just come down and

do again div ECX and so on. So, this is how a do while loop can be translated, and you

see there is a one two one translation here whenever I encounter a loop put a label

there right and then check the condition there itself if it is a while loop like what we saw

earlier if the while loop we immediately check that condition and do the necessary

jumping, if it is a do while then put the body of the loop here then go and check the

condition and do in necessary jumping. So, that is it now we will just go into the manual.

Now, about this manual you can read in your summer vacation, instruction

format will take quite long time for you to understand instruction to understand

that is not necessary let us go to chapter three in instructions set reference.

(Refer Slide Time: 16:38)

So, our whole things starts
with AAA instruction
ASCII adjust after addition that it 318.

So, we can go to 318. So, let us take the add instructions add.

(Refer Slide Time: 16:49)

So, these are all the varieties of add you can have, we can just say add AL with an

immediate 8 AL you know I explain what is AL right add AL with immediate 8 immediate

8 is an 8 bit operand 8 bit value right immediate operand; add AX with immediate 16,

add EAX with immediate 32, add RAX, RAX is for the 64 bit extension there also we can

immediate 32 you can add r slash m 8 with immediate 8, r slash m 8 means a the left

hand side operand can be a resister of 8 bit or a memory location of 8 bits r slash m 8

with immediate 8 r add r slash m 8 with immediate.

Student: Destination of the r (Refer Time: 17:53).

Destination will be first is destination second is source always.

Student: We have like r a comma b stores in.

Add AL comma immediate 8; obviously, AL should be the destination right immediate 8

is the constant. So, from that you can infer. So, always first is the destination second is

the source. So, what do you mean by add r slash m 8 add; immediate 8 add the

immediate 8 to the content of a resistor 8 bit resistor or a content of and 8 bit memory

meaning one byte right. Similarly r slash m 16 with immediate 8 r slash m 32 all varieties

of add which human being can never conceive of all these are there.

(Refer Slide Time: 18:49)

I can have add r 64 comma r slash m 64 this for the 64 bit operations also then

at the end please note that. So, this is the operation, operation will be destination

is destination plus source. So, one will be destination, destination will be

destination plus source and please note that this instruction importantly please

note here it will effect these flags what are the flags it is going to effect? The

overflow of flag, sing flag, 0 flag, axillary flag c is CF is somewhat.

Student: Carry.

Carry flag and PF is parity flag; all these flags it will affect then it will also it will

can also give you an assumption exception.

(Refer Slide Time: 19:25)

(Refer Slide Time: 19:32)

For example; it can give you memory divide this is add. So, if your memory operand is

outside your segment, it can give you if the destination is located in a non writable

segment, if a memory operand effective address is outside segment limit if the if there.

So, this is as I told you yesterday we are talking about protection right. So, we will talk

about this in great detail, but it can give you a set of exceptions if you are trying to

access memory which is which you are not allowed to access both for reading

and writing. So, are you able to get and understanding of this now let me go into

something and say this. So, let me say I want to move sorry let us add EAX

comma, 0 x 1000 what it will do what will this instruction do? It will take the it will

take the 32 bits starting at 1000, 1001, 1002, 1003 stored at these four, we will

take that 32 bits added with the content of EAX and store it back in the EAX.

So, now if I say add Ax comma, 0 x 1000 it will take the 16 bits that are stored in

1000 1001 and added it with A x and store the resultant A x; if I say add AL

comma 0 x 1000 then it will take.

Student: (Refer Time: 21:32).

8 bits that are stored in 0 x 1000 alone add it with AL and store the result back. Now let

us take these three instructions add EAX, add A x add AL see the Op code, see this line

basically talks of the Op code this tells you what the operation is both for r 16 and r 32

the op code is the same right, but what it will do is there is an prefix that will be added

right there will be a prefix that will be added in front of this 0 1 which will say that this is

a 16 bit instruction. So, please note that the op code is same to distinguish between

whether it is an r 16, m 16 comma r 16, or m 32 comma r 32, we cannot do it here

because r the Op code is the same. So, before the op code there will be a prefix that will

be adder which will say that this is the 32 bit instruction r 16 bit instruction.

So, for every op code there will be a prefix which will distinguish whether it is a

16 bit instruction or 32 bit instruction. In some sense Intel was too lazy it has

finish the 16 bit encoding, now to convert to 32 bit it did not want to do another

fresh encoding. So, what it does is in a 16 bit instruction if I put a 32 bit prefix in

front of that 16, bit instruction it will start behaving like a 32 bit instruction we are

able to get this right. So, this is how Intel mood from a 16 bit architecture to a 32

bit architecture you can have a 16 bit instruction.

Now, if I want to make it a 32 bit put one prefix in front of 16 bit then it becomes

a 32 bit instruction. So, this is how you start reading this manual it does not looks

carry. So, first two or three instructions you will struggle after that you will get

used it. So, with this I stop my introduction any doubts do not tell me you did not

have doubts you will have doubts.

Student: Sir.

Yeah.

Student: Where are the op codes (Refer Time: 24:10).

Where are the.

Student: Op codes (Refer Time: 24:14).

It is in the manual.

Student: (Refer Time: 24:16).

When you compile it you get Op codes right the op codes are the one which the

machine can understand correct. So, when you compile the c code for example, good

question. So, this is the c code this is a human readable form if I write 0 1 1 and 0 you

cannot read it right what you see on the right hand side sorry what you see on the right

hand side where my hand is rotating right this is a human readable form of your op

code, all your move add and all will be there is an equivalent zeros and ones, but I

cannot rise zeros and ones here because then you cannot understand that.

So, this is called an mnemonic which is which is a readable form of your op

code, but what you see on the right hand side is basically zeros and ones it will

be represented zeros and ones these are the things that will go into your system

and your machine your architecture will understand only those zeros and ones, it

cannot understand the C program that you see on the left hand side it will

understand the assembly program that you see on the right hand side.

So, this move compile excreta or human readable versions of your op code,

ultimately this are this will be in binary and this is what your system will understand

system cannot understand do while loop and all, but it can answer understand this.

So, this is what we will go into your computer into your architecture and architecture

we will execute right are you able to follow yes or no.

Student: Yes sir.

Yes, fine enough.

