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So, welcome to this final lecture of this course on Computer Organization and Architecture.

In this lecture what I will be doing is I will be talking about some of the recent trends in

computer architecture why certain things have happened in the last decade and a half and

then I will also be giving you some I will be showing you a video basically from Google on

YouTube on what is the next computing, trend in computing that the world is actually headed

towards before we some of this course.

(Refer Slide Time: 00:57)

This is the computer made in 1946 in University of Pennsylvania it is measured in cubic feet

and this  was not  bigger  than today’s glorified calculator  the functionality  that  this  could

execute was very close to what today’s calculator can took.

This was basically call  the ENIAC, it  had you know in it  had several vacuum tubes and

several connections that were going on lot of wires that were running.



(Refer Slide Time: 01:27)

And the same chip the same ENIAC with the same functionality in 1997 was basically built

using 174,569 transistors and the size of the chip was 7.44 millimeter into 5.29 millimeter

and it was using a 0.5 micron technology 0.5 into 10 power minus 6 meter technology. What

is 0.5 micron in sense that if you assume that a transistor it is a very rough answer what do

you mean by 0.5 micron the rough answer is that if you assume a transistor is a square then

the side of the square is 0.5 into 10 power minus 6 meters. So, this is roughly what we can

say.

Now what made this possible that is you know from this in 1946 to this in 1997, 51 years

what was it that made it possible from cubic feet to less you know to a couple of millimeters

square.



(Refer Slide Time: 02:31)

The first thing that we are we should note is the major integrated circuit revolution which

came  in  1958  from Jack  Kilby  of  Texas  instruments  where  he  showed  that  on  a  same

substrate more than one component can coexist. So, he made one substrate where it had 5

components there a couple of transistors resistors and capacitors all of them existed on the

same substrate what you see on your left hand side in your screen.

So, this basically; that means, that I could get the circuits different components of the circuit

put on the same substrate and that formed the basis of what we call as an integrated circuit

where we integrate multiple varieties of components different types of transistors etcetera on

the same substrate to realize certain functionality that integrated circuit evolution had grown

so well that in 2000 what you see this is these are some of the images which Intel releases

this is a Intel Pentium 4 processor in 2000 which had close to forty two million transistors

and 1.5 gigahertz speed and they were using this 0.18 micron Cmos technology right. So, this

is a 180 nanometer technology.

So, from 1958 where we had 5 components on a substrate and we have gone up to 42 million

components on the substrate and this is the basic integrated circuit revolution.



(Refer Slide Time: 04:08)

So, what happened because of this integrated circuit revolution the amount of money that we

pay per million instructions per second or mips has decreased today for 1 million instruction

per second we pay very less than we pay almost zero cost.

So, when you compare with 1975 for a 1 million instruction per second computer they are

paying 1000 dollars today it has it has be sub 1 dollar right. So, this is the trend that you see

and what you see is there is a growth in the IC complexity in terms of number of transistors I

put on a single chip.

(Refer Slide Time: 04:36)



What you see on the left hand side what you see on the y axis is a logarithmic scale right. So,

you know on a logarithmic scale if I get a line then essentially it is an exponential growth and

what has happened is that one bill the number of transistors we could put in unit area has

keep growing exponentially over the last several years and that is what this has shown this is

showing.

(Refer Slide Time: 05:14)

Now, if you actually count the number of transistors as second this is the Intel release data

4004 has less than 1 hour between they are less than 3600 transistors 80, 80 is what to us

while you take the p four which is around 1.5 years. So, number of 1.5 into the you know 365

into 24 into 60 into 60 that many seconds that many transistors were there in p 4 as you see

here.



(Refer Slide Time: 05:45)

And when you see the comparison of sizes of the die please note that the die size has not

grown very big, but the number of transistors that we put inside a die that this transistors per

unit area has significantly increased and that is the integrated circuit revolution.

(Refer Slide Time: 06:05)

Now, how small are the transistors we have seen something till 2003 where we are seeing it is

sub 0.03 micron. So, you know that the you may know that the human hair a well maintained

human  hair  the  diameter  of  well  maintain  human  hair  is  56  micrometer  now  you  see

something that is 0.03 micrometer. So, that is the size of transistor today.



(Refer Slide Time: 06:37)

So, one of the important things one patent law that was basically predicting this was Moore’s

law which basically said that the transistor density will double almost every 2.3 years what it

means that number of transistors I can put in a unit area will almost double every 2.3 years

right and that is what we have seen. So, the doubling is what you have seen the exponential

growth in the number of transistors as you see here right within the same almost the same

area we were able to get twice the number of transistors then what was say two point three

years before.

Now, if you have more and more transistors what is the implication like I have more workers

right every transistor can implement some functionality. So, if I have more and more workers

that; that means, I have more functionality and; that means, I can put more complexity into

the  system.  The  other  way  of  looking  at  it  more  and  more  transistors  it  becomes  very

complex to manufacture complex to verify and if I put more functionality your complexity of

the chip will increase. So, I can do complicated operations complex operations on the system

at the same time the design also becomes complex. So, these all these things will have an

implication on the cost of manufacturing the system.



(Refer Slide Time: 07:59)

On the other hand the frequency also started doubling right. So, this means that I could get

more and more fast clocks and assuming that the number of operations remain the same,

number of cycles per operation remain the same we have a higher frequency then I can start

executing instructions faster than the previous generation. And again you see a log scale on

your way axis here and a linear growth in the frequency which is means of the frequency was

growing exponentially over time.

(Refer Slide Time: 08:30)

Nothing comes free of cost as your frequency started increasing your power also started



rising exponentially the power consumed by your processor. So, this is what we see you

know we have already seen a hot plate and if that trend that continued post you know what

you see on the y axis is again a log scale which is having power density which is the watt per

centimeter square you know consumed by the chip or dissipated by the chip.

(Refer Slide Time: 08:40)

So, now, because of that your temperature starts increasing. So, if you had allowed the trend

to continue you would have reached a nuclear reactor by you know some around mid of 2000

to 2010 and then a rocket nozzle by 2009 and half almost you would have get some surface

by 2010.

So, this is very complicated because has a frequency increases you have power consumption

also increases your power density amount of power consumed per centimeter square also

increases and that can reach to lot of power temperature issues and this is something which

we cannot even imagine. So, we can maximum go up to a hot plate and that is where the

things have stopped as you see in the graph it all stopped at p 6 20 empire we have touched

hot plate in terms of temperature dissipation.



(Refer Slide Time: 09:56)

So, what can we do to bridge this gap? We can increase the frequency you can increase the

voltage of operation we can increase the amount of work done per time unit to these three and

we can increase the number of hardware units.

(Refer Slide Time: 10:17)

These are the four different ways by which I could make the computer more and more faster.

If I start increasing the frequency already this has been attempted for a long time the increase

in  frequency  need  not  necessarily  give  you a  better  performance.  So and increasing  the

frequency  also  increase  the  power  consumption.  If  I  increase  the  voltage  of  operation



certainly your power also gets increased by large quantity.

(Refer Slide Time: 10:27)

So, the waste thing is to increase amount of work done per time unit. So, the way, that is how

many companies including Intel came out.

(Refer Slide Time: 10:35)

With the notion of multi threading or hyper threading in a multiprocessor system.



(Refer Slide Time: 10:41)

There will  be two separate  CPUs each will  have its  own architectural  state  meaning the

general purpose registers and all those things that you need to run the process they have two

separate architects state. So, they can run two independent process, but one of the biggest

drawback as you would see in the subsequent slide about this is that if one of the processor

whatever you see on the left hand side there are two process of execution unit with two

architecture state registers. If one of the processor is executing an integer program the entire

floating point resource that you have put on the one of the process going to be waste while

the other processor if it is going to use floating point programs then the integer arithmetic

there is going to be a waste.

So,  I  could  have  two  classes  of  program one  using  floating  point  another  using  integer

arithmetic when, if in the case of the multi processor that you see on the left hand side both of

processor will have both the floating point and the integer unit. So, one processor when it is

executing the integer program the floating point unit will be idle there and another processor

the  integer  unit  will  be  idle.  So,  is  in  sense  we are  not  using  we are  not  effectively  or

efficiently using the hardware given to us. So, that from that multi code that that is why there

is a notion of hyper threading which was introduced where in there will be two different

architecture state, but the processor execution resources would be shad that is what you see

on the right hand side in this slide.

So, what happens here is  that  in the context  of me having one integer  program and one



floating point program there will two different architecture state of course, for each of these

processes. But the processor execution resources will be more effectively used because both

the integer and the floating point units that are part of the right hand side the single processor

execution resource will be effectively used here. So, from going from a multi processor to a

multi threading or hyper trading environment this served as a basic motivation. Not every

program will go and do every type of computation there will be some program which will do

integer there will be some program which we doing floating point. So, if I have one processor

execution  resource  which  will  have  both  integer  and floating  point  I  could  run  multiple

processes at the same time this is the biggest motivation for people to start looking at hyper

threading slash multi threading.

(Refer Slide Time: 13:24)

So, this is a very clear thing whatever we see. So, the this is a graph actually whatever you

see on the y axis is the time and whatever you see on the x axis is whether a particular unit is

occupied or not as you see the first we have already seen in a superscalar. N ow in the first

cycle there are let us assume there are three units inside the superscalar processor now in the

first cycle two of the units are occupied one is empty in the second cycle all the three are

empty in the third cycle two are occupied etcetera and showing on the left most side of your

thing just superscalar.

Now, only  one  process  the  orange  process  as  I  see  here  may  be  you  see  it  as  yellow

something yellow oranges type you know works here only one process can execute when I



have a multi processing environment where I have two CPUs as you see on the next from

your left the second from your left I could run both the orange or yellow instruction and also

the green instructions at the same time right.

Now there is something called, so this two course one running one yellow process another

running green process in the superscalar thing that you see on the leftmost the first one you

cannot run the green process until your yellow processes process is executing. Now if you

have multi core if you have multi CPU I can run both the things, but what I have done have a

reduced a number of empty slots actually by going from superscalar to multi processing I

have doubled the number of empty slots.

Next comes the you know the hyper threading where we can start using some amount of

resources right. So, the hyper threading basically has two architecture state that I shown here,

but the execution resource will be shared. So, what you see on the third column that is under

hyper threading in this slide you see that whatever we (Refer Time: 15:24) multicores the

execution research resources have merged there.

Now, you see the number of white squares on your third column is much less. Now today we

can we are looking at multi processing with hyper threading that makes much more sense

where in you have green yellow orange or and blue and yellow set of four type of programs.

As you see as  you move from the left  to  the right  the number  of  white  blocks  actually

significantly reduces and this is one of the way by which I could get better performance for

my workloads.



(Refer Slide Time: 16:03)

So,  a  conventional  superscalar  as  we  had  seen  what  happens  it  takes  one  red  program

executes it and finish right.

(Refer Slide Time: 16:12).

So, what happens is that if I do that you see you see in this slide as I move the mouse on top

of it you see there are many white slots here, this units are under replaced.



(Refer Slide Time: 16:28)

When we move to the symmetric multiprocessing where I have two course at the same time

two different course the number of white still actually doubles. So, I have more hardware and

lot more hardware when compared to the single one namely this compare this only these slots

are wasted, but here it has doubled this slot plus this yellow slot. So, when I go for symmetric

multiprocessing yes I can do two processes at the same time, but then the wastage of resource

is still comfortable the wastage of resource is still significant here.

(Refer Slide Time: 17:03)

So, that then came the notion of a multi threading as you see here. So, I have 4 types of



programs in the ram as a show through the most one green red yellow and purple and in multi

threading what we do we just first execute two of these four threads let us assume. So, the red

and the yellow gets executed, but what happens is at one time slot as I move every row in this

particular front end as I show here will have only either the red instructions or will have the

yellow instructions. By this what happens is that the number of you know wastage of units

does not significantly reduced.

So, this is multi threading where I have a single CPU and I execute two threads at the same

time, but every entry of every thread we will occupy exactly one. So, so every row here will

not have more than one instruction or more than one process that is basically involved. So, in

one slot I would have either the red or the yellow, but not both that is what we call as multi

threading.

(Refer Slide Time: 18:20)

Now, when we go to hyper threading please note that in one slot I could have both red and

yellow instructions, so yellow instructions will work and then immediately you see that the

number of white spots here have reduced. So, this is how processors got evolved say till last

for  5  years  where  in  we  brought  in  notion  of  hyper  threading  multi  threading  etcetera

basically to start utilizing the resources today, I cannot keep increasing the frequency because

if I start increasing the frequency beyond this point your system will start burning we cannot

have take that much amount of temperature.

So, the idea is to have slightly low frequency or very low frequency CPUs, but many of them.



So, if I have one say four gigahertz CPU, but I have 3 1.5 gigahertz CPU then certainly that

that 3 into 1.5 is four 0.5 gigahertz if I am able to use those 3 CPUs underlying 3 CPUs

effectively then automatically that will overshoot the 2 gigahertz circuit.

The question that we want to do is that given a hardware with the limited frequency, but

multiple of them how can I use all of them together to go and exploit the performance and

that is what the last part of the course before this lecture I gave you the a notions of different

parallel random access memory like your EREW CRCW and CREW which basically teaches

you how to write programs. So, that things like hyper threading can basically get a full you

know a set of threads so that it can process it faster and you get the best benefit of having

such type of an hyper threading environment.

So, with this, this is how the super scalar and this  top level processors are going. So, to

conclude what video says is something much different than what we covered in course, but

that is going to be the future of computing. So, what is needed is yeah completely low very

low power embedded processors capable of doing certain minimum functionalities in terms

of graphics processing,  in  terms of communication and in terms of you know embedded

computing that is one major need that we have. And we cannot say that the processors that

could basically achieve what the video showed could be you know small computing systems

because the type of processing that has happened there essentially needs lot of computing

power, but that computing power may not come from a general purpose system, but it will be

custom made processors with certain digital signal processing vector processing capabilities.

So, how do we get to this level is going to be the next quantum jump in the field of computer

organization and architectures and that is going to be a very interesting revolution that is

going to happen in the next few decades and its going to be pretty interesting. So, computer

organization and architecture will never have its that we have to it will grow and it will grow

in phenomenally in different directions and this one what we saw in the video is certainly one

direction in which the next generation computing processors have to look at.

With this word I conclude this course I hope you enjoyed this course and I look for feedback

from  you  and  more  interaction  and  a  good  carrier  hopefully  in  the  area  of  computer

architecture and organization.

Thank you very much.


