
Computer Organization and Architecture
Prof. V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture – 40
(Part -1)

Concurrent Programming in Hardware

So finish at the earliest, fine. So, we will do this part of the story. So, one of the

most important thing that we need to learn is how to program a parallel machine.

(Refer Slide Time: 00:26)

Now, what I am trying to teach is some small tip bits of how to go about programing

a parallel machine this is a completely algorithmic treatment, then there are courses

on concurrent programing there are parallel programing courses high programing for

high  performing  computing  computers  or  high  performance  computing  courses

which deal with you know parallel programing that is part of your curriculum and

electives.  So,  there  are  many  many  electives  in  the  department  the  course  on



concurrent programming will also teach you much more about this. But what I am

trying  to  tell  you  is  how  can  I  model  a  parallel  computer  how  can  I  model  a

computing on a parallel computer I thing that is very much is necessary and I think it

should be part of a computer organization architecture course.



So,  like  how  there  is  an  algebraic  model  of  computation  for  your  sequential

computing single core computing right based on which you have got all your big one

rotation size order a n square omega n square you did have those things based on

that algebraic model of computation. Now there is a parallel random access memory

access random access memory model of computation which you call it as the p ram

model, p ram here stands for parallel random access memory. Now there are a set

of processes processors there are all writing into the same memory correct.

(Refer Slide Time: 02:13)

And there is a bus that is connecting this processor there as we are seen in the

earlier part here right and every this is a symmetric multiprocessor system also

meaning all processors are equal capabilities and they can read or write from

any location in the memory right.



(Refer Slide Time: 02:23)

So, now, at any point of time there will be a token whoever has the token will come

and access the memory I cannot say while I am writing the algorithm I cannot say

who has the token. So, let us take one time stamp at that time stamp there are 4 of

us,  anybody  can  have a  token,  but  at  that  time stamp I  every  fellow will  have

something to read or write from memory right at that time stamp every fellow will

have something to read or write from memory. Who are gets the token first will write

it write or do will call it as access the memory access is a word use for both reading

and writing. So, everybody will have something to do with the memory who gets the

token will access. So, when I run the program again let us assume that same time

step or same step the token may be with somebody else also right. So, at some

point of time, let us take all the 4 programs are running they are trying to do one job

together I go and take some time slice at that point every fellow will have something

to write into the memory or something to read from the memory.

If it is the case that at any time stamp I take, I will stop the algorithm no 2 fellows are

reading  or  writing  from  the  same  memory  location  then  it  is  called  exclusive  read

exclusive write parallel random access memory modern right. I stop the program at any

point of time I just stop it freeze you know there is a game called freeze. There are what

happen now I will say who all want do what with memory then I find out no 2 fellow want



to read from the same location or no 2 fellows want to write into the same location then

it is called exclusive read exclusive write parallel random access memory. So, if I



write a program if I write a program such that at any point of time I freeze that program I

write a parallel program a multi tread that program where each tread will execute on one

each of this processors I write a program in such a way that at every time step I stop a

say freeze what  will  happen at  any  time I  go  and say  freeze and I  look  at  all  the

processors what they want to read or write no 2 processors want to read or write from

the same location. So, no 2 fellow will read the same location also.

So that means, as processor p 1 I want to do some access it will be some location a one

like that a 2 a 3 a 4 none of these locations will be equal they are all different then this is

called a exclusive read exclusive write parallel  random access memory model right.

Now if that program is such that 2 fellows want to read from the location there can exit

at more than one fellow who want read from the same location, but no 2 fellows will

write into the same location then it is called a concurrent read exclusive write model.

So, there will be several this fellow wants to write to a 1 this fellow wants to write to a 2

this fellow wants to write to a 3 read from a 3 and this is read from a 4 a 3 and a 4 can

be the same because they are trying to read. So, more than one fellow can read from

the same location, but no 2 fellows write to the same location you can write to different

locations then that type of a model is called concurrent read exclusive write model. The

third one is any fellow can read or write from this any of the location then it is called a

concurrent read concurrent write model. So, there are 3 types of models there are 3

types of models the EREW model which is exclusive read exclusive write where in I

freeze at some point no 2 processes will read or write into the same location.

A CREW model where a freeze at a point 2 fellows can read one or more fellows can

read from the same location, but no 2 fellows write to the same location. There is a third

model where any number of people can read from any location or write into the location.

So, the program that you write may satisfy one of these criteria. So, absolutely there is

no issues in EREW absolutely there will be no issue in CREW also right because its

only reading, but there can be one specific issue in CREW. What is that issue? Let us

now start little more in (Refer Time: 07:43). Now we say deterministic algorithm what is

deterministic why it  is called deterministic algorithm, there are 2 verities of algorithm

right  deterministic  algorithm  randomised  algorithms  or  do  you  know  randomised

algorithm you have read randomised algorithm. So, what is a deterministic algorithm?





For are given a free condition the post condition is well defined for every instruction

for every step in your algorithm then it is called a deterministic algorithm.

What is randomised algorithm? For every step the think is not well define; obviously,.

So, toss a coin I do not know whether it will come and exact tails unless you read the

coin right followed. Now the parallel algorithms that I am going to write should also be

deterministic in the sense after every time step I should get the same result any number

of time I am executing see suppose I am executing a program toss a coin right first time

I execute it  will  give me heads again it  will give me a tail.  So, you do not know the

output, but what we are interested here is to run deterministic algorithm on this parallel

models right; that means, I run it once I stop it sometime t I see the results (Refer Time:

08:52) sometimes step t not time step I should get the same answer irrespective of

whichever time I am running. So, one time I run I should not get one answer a another

time I should not get another answer b that contradict the definition of determinism or

deterministic nature of the program.

Now with EREW do you think there will be a problem with deterministic execution no

correct it is obvious right with EREW will not have a problem with deterministic, but

CREW  will  be  have  a  deterministic  no,  with  CRCW  will  there  be  a  issue

deterministic yes right the reason is - both of us want to write at the same point of

time he is writing 2 I am writing one. So, one time when I am executing if the token

is with him then what will be the final value one because token is with him he will 2

after the token will come to me I will write one right in another time the token is with

me I will write one then you will get the token he will write 2.

So, so at the end of this step one time it will be 2 another time it will be one. So,

when I write an algorithm for the CRCW model correct I should see that at any point

of time if 2 fellows want to write into the same location if 2 fellows want to write into

the same location then they should  write  the same value right.  So,  when I  am

designing algorithm for the CRCW p ram model, I should ensure that if 2 fellows

want to write into the same location then they should write the same value. (Refer

Time: 10:47) are you getting what I am saying followed if you does not happening

then what I told would happen right. So, he wants write 2 I want write one if he gets

the token the answer will be one if I get the token answer will be 2 correct.





Now we will design algorithms for EREW, EREW just little bit larger extension of

that.  So,  we will  write  one algorithm for  EREW then one more algorithm for

CRCW and that we will do today we will finish it today.

(Refer Slide Time: 11:19)

Now this is known to you the recursive doubling technique now I have 8 processors right

numbers 0 to 7 of course, this 0 processor will just do nothing right I want to do the

prefix some. So, I have 1 1 minus 2, 3 minus 2 plus 1 7 plus 3 minus 2 plus 1 minus 8

plus 7 plus 3 minus 2 plus 1 I want to go it. So, this you are already seen where did we

see this recursive doubling technique where did we seen recursive double ah.

Student: (Refer Time: 11:48).

(Refer Time: 11:50). So, on what operator can we do recursive doubling?

Student: Associative.

Associative it also called some high (Refer Time: 11:58). So, we saw this recursive doubling

technique so what we do? We just add so every processor is given one location every

processor is given one location and what it does it just it reads its value that is one time

step, then its reads its value that it is pointing to that is the second step, adds it and stores it

back where in the same location and if it is pointing to 0 then basically it does not read that



value it know it is a 0. So, 0 is put like a you know sentinel flow. So, what happens at the first

step everybody will be reading its own value. So, it is exclusively



read right and in the next step it will be reading it neighbours value in this case it

is only reading nobody reads from the same location right this fellow 7 will be

reading from 6, will be reading from 5, 5 will be reading from 4; 4 will be and 1

will not read anything 4 right. So, its again exclusive read.

After that what it will do? It will add minus 15 plus 6 and store it here it will be

minus 9 or whatever. So, it is again exclusive write. So, at every step I am doing

only every processor reads from some location no 2 fellows read from the same

location  and  they  write  to  one  location  and  no  2  fellows  write  to  the  same

location. So, this is very much fitting our EREW algorithm.

(Refer Slide Time: 13:37)

So,  first  step  what  will  happen  this  is  what  happens  everybody  would  have  read

themselves and then neighbour and this is how in the second step again you see this

fellow will be read 7 will be reading 7 will be reading from 5, 6 will be reading from 4 and

so on right. So, this processor will read minus 9 then it will be then it will read minus 1.

So, when this processor is minus 9 this fellow will be reading of minus 1.

So, the processor will read from itself then where it is pointing to and no 2 fellow point to the

same location.  So,  at  the end of  this,  so second step also can be executed as CREW



similarly third step, similarly 4 step right and I do not read this 0 this just a centimetre.



(Refer Slide Time: 14:17)

So, you are this is sum, sum is a semi group operator what Raghav, sum is a semi

group operator and, so this entire prefix sum can be carried out with in EREW p ram

model are you able to understand what I mean right that is what I mean by steps.

So, at the end of every step you do a barrier I have already thought you barrier right.

So, read this barrier then do this barrier then write barrier. So, I can put barrier and

then.  So,  that  I  synchronised such that  no 2  fellows read or  write  in  the same

location and that is where you need a barrier to execute right are you able to get

this, so this is one. So, what happens, how many processor I have n processor log n

time I can finish right. So, I had 8 I finish in 3 steps. So, n processor log n time I can

finish  this.  So,  like  this  I  can  do  prefix  minimum,  prefix  maximum,  prefix

multiplication, everything I can do n processor log n steps.



(Refer Slide Time: 15:13)

So,  now, I  will  introduce another  small  thing  called I  hope I  have that  I  will

introduce (Refer Time: 15:44) sorry I did not put the slide here. So, I will just see.

So, what if I have if I have n processor I can do in order log n time what I have n

by p process, if I have p processors.

What if I have p processors? So, what I will do is what is the speed up I can get this is

actually called as this is processor this is time processor into time should be equal to

complexity of the best known sequential algorithm right. So, I have n processors log n

time is log n log n is the complexity of doing prefix sum what is the complexity of the

best known sequential algorithm for doing prefix sum what is the complexity of n right

So, n log n is not equal to n right n log n is not equal to n. So, this is not an optimal

algorithm. So, what is an optimal parallel algorithm? An optimal or parallel algorithm is

one in  which the processor into time product  is  equal to the complexity of  the best

known sequential  algorithm;  that  means what,  you have equally  split  the work load

among the different processors that what it that is what it means right. If this particular

condition  is  satisfy;  that  means,  I  have  equally  split  the  work  load  across  different

processors right. So, in this case the pt product is n log n, but the best known sequential

algorithm will take n unit of time. So, n log n is not equal to n. So, this is not an optimal



algorithm recursive doubling.  So, how will  I  make it  optimal? So, we use something

which is very trivial let us see how it is happening. So, suppose I have p processors.



Student: Why are we quantifying complexity is processor (Refer Time: 18:04).

Because that is the total  work no. See if  I  have split  the work across all  the

fellows equally then it  is  an optimal  way of doing the best  known sequential

algorithm is n some complexity this the best known. So, I can only do as best as

this if I do something better than that then that will sees to be best known correct

right. So, if I say that each processor will do this much amount work if I take the

sigma of that total work is better than the best known sequential algorithm then I

can make the same processor do one by one after this and I will get still better

known better sequential algorithm are you getting this.

See the best known sequential algorithm say let you take 100 units of time right

suppose there are 4 processors I have a parallel algorithm such that each processor

can finish in 22 units of time. That means, what I will this 4 processor I will take one

processor do the same task one after another then it will finish of in 88 unit of time

this contradicts the fact that this is a best known sequential algorithm correct right.

So, if I have the best known sequential algorithm then I have this many amount of

processors and this time. So, this processor into time should be equal to the best it

can be best equal to the best complexity of the best known sequential algorithm

correct. So, that is that is the (Refer Time: 19:33). If it is not then it become a sub

optimal algorithm this is a sub optimal whatever you have seen.

So, how to make it optimal? We will not have n processors right suppose I have one

million numbers will you have one million course no. So, essentially I will have some

p processors p is a constant sometime. So, what we will do? We will split up into n

by p buckets. So, n 1 let me call it as bucket 1 bucket 2 till bucket p each having n

by p numbers ok. You understand this. Now I will do the prefix sum. So, I will give

one processor to each one of them I will just go to sorry I will go to that.



(Refer Slide Time: 20:27)

So, totally there are n numbers. So, I will put it in to bucket B 1 B 2 to B p. So, n

numbers, p processors, this is ideal situation right where n is very much larger

than p now I will put the equal bucket. So, each will have n by p each.

So, I will do the prefix sum of each I will do the prefix sum of each how much time it

will take and I will assign one processor I will assign p 1 p 2 to p small p. So, I will

assign one processor to each and ask them to do the prefix sum for each one of

(Refer Time: 21:27) and they do it concurrently. So, how much time it will take n by p

time at the end of this what will happen I will have one A 1 A 2 A 3 A 4 A p right this is

the prefix sum of the first n by p elements here the last this is the sum what will be

the last after I finish the prefix sum. What will be the last element here? It will be the

sum of all this elements here this will be the sum of all this A 2 will be the sum of all

this element, A 3 will be A 4 A correct you understand this.

So, after I finish this prefix sum in each of this individual box the last element will be the

sum of all the element in that block what is the final answer? If I  add A 1 to all this

elements right then that is the final answer if I add a one plus a 2 to all the element here

then it is a final answer, if I add A 1 plus A 2 plus A 3 to all the element here that is a final

answer, if I add A 1 plus A 2 plus A 3 plus till A p minus 1 to all the elements here than



that is a final answer. So, what I should do now I have A 1 A 2 A 3 A 4 till A p I will



do the prefix sum of this then what I will get? I will get A 1 A 1 plus A 2 A 1 plus A

2 plus A 3 A 1 plus A 2 plus A 3 plus A 4 and 1 A 1 A p minus 1 I will get this.

Now I will take this A 1 and add it to all this fellows here I will take this answer

and add it to all here, I will take this answer and add it to all here and so on I will

take this answer and add it now I will get the final answer. So, how much time it

required. So, I took n by p time already for doing this individual computation,

then how much time will I take for I have p processors and I have p elements

how much I will take log p time to find this sum.

Then again I take one number and add it to every fellow how much time will you

take n by p time right because I take one number each processor will take that

number  and add  it  to  the  list  of  this.  This  will  take  a  one plus  a  2  already

computed and add it to this. So, they will do it concurrently again it is n by p time.

So, this is nothing, but 2 n by p plus log p since n n is very much larger than p

this log p goes off. So, this is order n by p. Now number of processors is p now

time is n by p p into n by p is n and this is an optimal algorithm yes.

Student: Sir, prefix sum algorithm are we allow to carry on any index i?

So, this is a recursive doubling you already talking (Refer Time: 24:56).

Student:  (Refer  Time:  24:56)  like  any  given  hide  as  to  give  the  sum of  all

numbers from 0 to I right.

No, but you just have this p location and just execute recursive doubling that I

tough earlier.

Student: No this will give a total sum that fine but.

No (Refer Time: 25:10) it will give the A 1 A 1 plus A 2 A 1 plus (Refer Time: 25:13).

Student: It give all that, but like.

After that the processor each processor will read exactly one of this location, so

p 2 will read A 1 and add it to its element at that time p 3 will read A 1 plus A 2

simultaneously and add it to (Refer Time: 25:30).



Student: Sir what we are asking is suppose there are ten elements and.

It is an array.

Student: It is an array and if I give the input as 3 it should give the sum from 0 1 2 3.

Why you need.

Student: Is that (Refer Time: 25:42) functionality prefix sum of adding all the numbers.

Adding all the number.

Student: Because in our previous recursive doubling since we are doing single element

we can given a (Refer Time: 25:52).

No prefix sum is to create an array where it all sum of all prefixes.

Student: But we also solved a sub problem that given a index I we can give the 

sum from 0 to I 0 to I write.

Where did I saw?

Student: No like (Refer Time: 26:05).

Here also you can solve no.

Student: no here because we are grouping n by p. So, if x is like (Refer Time: 26:12).

After at the end you will get no.

Student: But like if the index is modular n by p only then it will work right else you

will not get.

Why?

Student: (Refer Time: 26:23).

Why?

Student: Sir because.



Is not is not number 1 to n by p I can number it no this processor as to read

processor p 2 will read from n by p plus 1 to 2 n by p.

Student: (Refer Time: 26:37) if I want index something like 3 by 2 (Refer Time: 26:41)

then I have to go to that index and then add A 1 and so on so (Refer Time: 26:48).

Prefix sum is you will do for everything and query on this that is what we are

being doing. Why should I say one. So, I want stop with I.

Student: (Refer Time: 27:02) no sir (Refer Time: 27:03) query on any prefix.

You set up you finish that own computation and then take from location and take

the prefix sum, still you can do. So, if I am given 100 numbers I will do the sum

for 100 and then query on element that is also possible here also, right.


