
Computer Organization and Architecture
Prof. V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 31
Paging, Cache

So, just very quickly; so all of you know how paging is enabled.

Student: (Refer Time: 00:24).

Right, and then what are the precautions to be taken before enabling paging, I

thought in the class.

Student: (Refer Time: 00:38).

The page that enables paging should be identically mapped, then only the next

instruction to be executed.

(Refer Slide Time: 00:46)

So, there is a page a000 to afff: three f’s. And then starting from b000 there are this bfff,

c000 to cfff. So, these three are pages in the. So, let me call it as data page 1, data page 2.

Then there is something from d000 to dfff, then e000 to some efff, then f000 to ffff. So,

where are the page tables you have stated? Page table is from f000 to ffff and e000 to efff

is the page directive. And this is what you call as something like a control page

which has earlier segmentation and other things.

So, this page should be identically mapped, this page also, this page also, this page

also, this one, and this one, all are identically mapped. Then every other page the odd

page should be mapped onto this one b000 to c000 and the bfff and even page should

be mapped on to cfff. That is how you set up your page directory and one page. So, let

us say this is one general thing that you can, then things like you can access a very big

address but see that it is going to access only a somewhere in b000 or c000. Then jump

to a very large off set, but it will jump to the next instruction. Things like that you can tr.

And once you do this, you will also see some changes in the page table. That page is

accessed, that page became dirty, all these things you can do.

The next interesting thing is you actually make one page not available and try to access

that address, see that it goes to a page fault handler. And what will the page fault

handler do? It will go and fetch the page do lot of things that we will not do that

operating system will teach you. The page fault handler can just go and make that bit 1

and restart that instruction so that again you can restart and start executing that again.

So, you can create a page fault and make that page 1 and then come back. So, these

are all simple exercise that you can basically carry over and get an idea of how this

paging works very very simple exercises. You apply your mind half an hour you can

finish this not a great deal at. And the interesting thing after that there is set of problems

that we have been cooking right, so every semester we are getting some new set of

problems. So, those problems what we says you can once you have this infrastructure

solving these problems are going to be very straight forward, correct.

So, this is what is needed out of you, very very simple. You get these basic

building blocks get an understanding of a then whatever problem is uploaded in

the model just go and do that. And that is going to very straight forward. See I

am telling you while doing this you will understand entire thing about paging;

tomorrow the operating system goes they talk about anything about paging you

will understand what it is. How will the page fault handler work, how will this

exception will generated, all these things will be known.

So, you have to write a page fault handler. What will the page fault handler do? It

should find out where which page there is a fault and then it has to go and make

that one. So, when a page fault happens there are some control register actually

updated saying where that page fault which page, you can get some ideas.

Just go and look at this Intel manual 3.

(Refer Slide Time: 04:36)

You will get all this ideas. So, you have to find out where went wrong and go and make that

bit one and then restart it will work. So, in terms of this please look at; see in a page

directory entry right the first bit is a valid bit. If we have 1 that means, all these things make

sense, if you have 0 nothing means sense. So, this is a page directory entry and this is a

page table entry. So, you could also have 4 MB pages. In large data bases they will, now we

are starting of 4 KB. We can have the page size to be 4 MB also. So, we will not bother

about 4 MB here, we will just do 4 KB because that is trying to understand.

So, these two whatever page this is 114 page number of this volume 3

essentially talks about how the page directory entry looks like, and this also tells

you how the page table entry will. So, this is what is pointed to by sorry; CR 3.

(Refer Slide Time: 05:37)

This is what the pointed to by CR 3: the start of this page directory and this will point

though this. So, every page table its address will be there in the PDA entry. When the

first bit is 1 as you see here I am just rotating here, when the first when the first bit is 1

then it essentially means that this entry is valid otherwise it is invalid. And what are

these things let us go one by one, very quickly read slash write what is R slash W.

(Refer Slide Time: 06:19)

Read write means, the first bit is 0th bit which is called bit 0 is the present bit. So, first bit is

read write, if 0 means writes are not allowed, 1 means write will be. Anyway a page

can be read for sure, but I may not allow you to write. So, for example, where do

you want in the absence of segmentation, suppose I have an architecture where

there is no segmentation; where do you want no writes.

Student: Code Segment.

Code segment, correct; code segment I do not want to touch or I could have

some parameters segments which I want to preserve, I do not want to program

to come in corrupt it. So, if I make certain segments as read only then lot of

security issue can be handled.

The second bit is user slash; if 0 means user mode access or not allowed

otherwise it will be allowed. User mode means three supervisor means 0 1 and 2

right, or 0 is supervisor 1 2 and 3 are user I do not know, you just check Section

4.6, we will go there but no, there is little it will takes time to back. And Section

4.6 I will tell you: I think user is 1 2 3 sorry; user is 3 and supervisor is 0 1 2 ok.

This page level cache, level write I will just check later. Just forget about 3 and 4

we will deal it when we do the cache. Fifth is access: after a loaded did I go and

read or write into it that is this. Sixth is the our famous dirty bit. Now then there is

something called 7; 7 is page size page size must be 1 otherwise this entry

references a page table; forget this also you just make it 1.

I will we will discuss about that later.

(Refer Slide Time: 08:20)

Eight is global: if CR4 dot PG is 1 determines whether the translation is global

otherwise ignore, this is also you ignore as because we are not going for 4 MB

pages. And there are some 9 10 11 3 bits which is ignored, which you can use.

Then there is page address translation again you can forget this bit m minus 20

30 32 of physical address of 4 megabit, so I forget that. So, these are the bits

you should know for sure; in this page directory entry and page table entry fine.

So, you set up this page table and start working on it, this is you see this.

(Refer Slide Time: 09:21)

This is what you see, table 4.5 is what you should see for 32 bit what are your use, that

was I think that was for a 64 bit right that is a 4 megabit. So, we are doing four kilobit

page sorry this is for you should know. And this is for a 32 bit entry. So, there are lots

more of these paging things that will come under advanced computer architecture,

because we need to know lot more about operating system to appreciate things.

So, we will stop at this stage to give you a blueprint operating system. Once you

start studying operating system there you may need so many other things, you

come back to argue and learn lot of this. There is no point in learning so much of

Intel also; Intel is not our cousin or something. So, we will learn something about

thing to just understand what is how paging works foundation we need, we will

not focus too much on Intel the other processors.

As I told you 99 percent of the computing device in the same now uses on. So, Intel

is only 1 percent because all computing devices are mobile devices today. So, we

will not basically break our head so much. But nevertheless we should understand

how it works and this is a very nice system, but nevertheless you should really want

to bring their secure system I still believe, why I am still teaching this because down

the line if I really want to build up for a security then it is very very important that we;

I think Intel will succeed that. This level of double security, three tire security; you

have a security at segmentation, security at paging and then four levels that and

then I have LDT GDT type of security, then from that then paging.

So, see dead codes: what are dead codes? Dead codes are those which you cannot

actually when you execute the program right you can never get that part of the code

to execute. These are all potential you know worms or whatever malicious code,

because in some specific input pattern that fellow will start execute. So, we are

really do not know by just looking at a program or by even executing a program we

cannot do a security analysis, where there could be some even function of the code

and some combinations of the hidden part of the code, some composition like

function one then calls function two then function three then the behavior will be

different. We call function one then function three and then function two the behavior

will be different. It is like it composited in different way and you get different

behaviors. So, these are some very interesting things that would happen.

So security wise, I think this level three level of protection will be estimated. And

then there is I do not know what you will be learning in operating system right. One

of the important concept that we need to learn is about capability based operating

system. What is a capability based operating system? A capability based operating

system is one where for every object in an operating systems you have certain

access rights, and its relation with every other object is very well defined.

For example, processors and objects; I take one process say some demon- http demon right

you know what an http demon right it, basically runs the http right. So, if I take the mail

demon also http demon have some access. So, there are several access resources and I

have CPU, and I have memory, I have peripherals, I have ports, I have net cards, there are

several things. And then within part of your system itself there are some specific parts of a

code like file system management, process management etcetera.

So, this process what is this relation with ever other process, I need to have that

values it should be very well defined. If it is not well defined then that is where

the laps is starts. So, this fellow should not supposed to go; the http demon has

demon is has not going to support go and touch some part of your super, why

should it go and access your super block of your disk; there is something called

super block you learn it up in OS course. Why should I go and access, right?

Suppose, I say cannot access that rule is simply implemented then your security of

your operating system can be much more effective. But that type of capability based

OS we are not in the position to build. But what I believe is that if you go as regress

as Intel x 8 6 plus this we can build a really capability based device. Why do you

enforce the policies and trust on the hardware gone and implement it.

So, I put this polices, I will put this rules, who will implement I am very happy if the

hardware does this work wherein the software, because hardware is immune. I have

designed the other account I change the transistor and software is put it. So, that is one

reason why I still believe that x v 6 will we sort of the hardware when you want to start

building those type of fancy or those type of really secured operating system. Doubts?

Student: Sir.

Yeah.

Student: Sir, (Refer Time: 15:20).

Linux uses x v 6, actually one brief question of Linux is even there 8000 of

course which you can see. We ask to receive too many Linux code then you go

mad x v 6 go and look at x v 6 is the whole thing.

(Refer Slide Time: 15:37)

So, there is database you can open it on see beautifully they have done.

(Refer Slide Time: 15:46)

So, this is very well written index code, you will have first 10 pages of 12 pages is.

See lot of empty spaces and here it starts: that memory layout. Can you see LGDT?

(Refer Slide Time: 16:13)

So, LGDT, so a s system is assembling so they are using LGDT. LIDT, LTR road

task resistor, clear interrupt, STI move instructions, GS register all these things.

That means, what Linux uses lot of your assembly instruction, I am just proving.

Just do not think that just delete see CR 3 everything is.

(Refer Slide Time: 16:53)

So, if you want actually learn see this. See this is segment descriptor limit, waves,

base then type and somewhere so limit 19 to 60 this is your segmentation. These

are all completely used. So, if you can actually go through this. Now it is all go to,

this is your context of your process task state. So, see you have entries for all your

registers right eax, ecx, ede, vx and then your csss ds; I told you right CR 3 that is

the entry fist you are also see in your task state. So, for every task [FL], so for every

task you can have your page directory base. I told you in the morning right. So, this

is that. So, this is context of your process and it goes on.

So, the entire course, this is the first line of code boot asm dot s. So, the first two

will be some entry here, so it goes.

(Refer Slide Time: 19:02)

So, this is how you enable paging here see: movl cr 0 eax or l mov as eax cr 0

right. So, this is the point where you are enabling paging, turn on paging. So,

whatever you did now operating system also does. So, I am just giving you a

one to one mapping of what is happening, then it to jumps to eax.

So, what do you did exactly in your lab right for enabling paging that is there in line

number 1153 to 115. If you understand x v 6 then you can do and directly play with the

corn. There are some 10 exercises here you understand all the 10 exercises you can go

and play directly with the corn. See clash lab: lab 1 to lab 7. After this right, after your

current course on the operating system goes best thing is to take x v 6 understand it

completely and the take this compile this into assembly and boot your. Now you are booting

with that USB right, boot with x v 6 and see how it is working. And then go and change them

scheduling and see how the counter works. So, that will be the (Refer Time: 19:59). You

know one full semester you should do fully operating system, (Refer Time:

20:03) complier networking and all these things.

But then if you do that you will become real OS data; that is something. Because

you really got a machine to boot scratch and come up. So, go and read this x v

6. This is real operating system.

Student: Sir.

Yes, you are only using trap gate right so for.

Student: (Refer Time: 20:34).

(Refer Time: 20:45).

Student: (Refer Time: 20:46).

You should have used only trap gate, you have used task gate because the template.

Student: (Refer Time: 20:51).

Why, what do you mean by implement the trap gate? Just you have to go and

make that IDT entry as whatever. You have to just change the bit type there that

is all then it becomes a trap gate.

Student: (Refer Time: 21:08).

Hidden work on, send the code that does not work. See the task gate will be

thought in assignment number 5 and I will also explained why task gate is

necessary in the context of in interrupt service routine. That I will explained that

is something called double fault and for that we need to have a task gate. But for

all practical purpose fort your intra service routine that you have written as a part

of your third assignment; task gate is trap gate is enough; trap or interrupt gates

are enough. Task gate you should not use means you can use, but.

Student: (Refer Time: 21:55).

Because your interrupt gate, the privilege level of your privilege service routine.

Student: (Refer Time: 22:11).

You set it to three, and what was the code segment privilege level? So, the

interrupter descriptor they will work point into you fourth segment right. What

was the privilege level of the code segment?

Student: Zero.

So, how will it work?

Student: (Refer Time: 22:35).

So, it will not work, right. So, we will teach you about task gate in the fifth

assignment. So, a trap gate for an interrupt gate should have worked in your

third assignment, if you did not work then send us the code I will clarify it.

Student: Sir.

Hm.

Student: (Refer Time: 23:06) of the entry of the IDT, that is used such that the (Refer

Time: 23:13) segment that is trying to access it will have the privilege (Refer Time:

23:18) than that of the entry of the IDT, right.

Right, so there are several issues here, I can only talk about; I will give you a

brief of what is happening.

(Refer Slide Time: 23:30)

See if I am a privilege k code then my stack has to be privilege k. Stack cannot be k

plus 1 or k minus 1. So, this is very important. This is what (Refer Time: 23:46) 6 will

ask for. So, if I am a privilege k code my stack also will be privilege k.

So, if I am a privilege 3 code the stack I am going to use should also be privilege 3. It

cannot be privilege 2 or 1, if I am a privilege 2 code the stack should also be privilege 2.

It cannot be 3, it cannot be 1 or 0, please note that. It is unlike a privilege level 3 code

can access a code segment of privilege level 3 and privilege level 2 can access 2 and 3,

but for stack if I am executing a privilege 3 code the stack should also be privilege 3. It

cannot be privilege 4 or that descript are should have privilege 3.

So, this is how x 8 6 is define the reason is as follows.

(Refer Slide Time: 24:46)

Now, let us say I am executing a privilege level 3 code; there is one instruction which

generates an interrupt or trap. Now what will happen is this will go to the interrupt. So, let me

state is giving you interrupt 30. So, I go to the IDT table, I go to the 13th entry and here I

have a code segment selector and then there is some privilege level here. This privilege

level should be at least 3 then only this fellow; if this was PL 3 this was also be 3, if it is PL 2

then this should be 2 or 3 then only this interrupts itself will be executed.

Now this will point to you a code segment, if this code segment is set privilege 0. This

code segment this is a selector right this will say some 15 or something. So, 15th entry

in your not in your IDT, this will be a 15 entry in your GDT or LDT depending on that.

There you will go; here there will be a base limit etcetera. And then there will be a

privilege level. This privilege level is 0. That means, now when it 3 code it is executing

because of an interrupt I am going to execute a privilege level 0 code.

So, what you will do is you will have a stack define for every process that I am

creating, I will have 3 stacks or 4 stacks. Every process I am creating I could

have 4 stacks: one stack is at privilege 3, another at privilege 2, another at the

privilege 1, another will be privilege 0. If this interrupt service routine in is at

privilege 1 or 0 right, then this stack either the zeros stack or the ones stack will

be executed depending on what the privilege level here.

So, for all the processing of your interrupt service routine this PL 3 stack will not be

used your Pl 1 or Pl 0 stack will be used; depending on what the privilege level. So,

why is this done? Because, I do not want the system stack and the user stack to be

the same. I am a program, I am asking for a service from the operating system that

is called a system call; I say print f scan, I go and ask many many things from the

operating system. In c there is a command called system right, are you aware of this

system and I can put whatever I want. So, essentially I transfer control to a system:

malloc for example is a system call, f open is a system call free is a system call.

So, when I call the system, the system call should not execute on the same stack as

my. Then what will happen after I return? I have access to the stack; I accept user

level process has access to the stack. So, I will start knowing more about what the

stack contains right. So, I will start having more ideas about what the stack is trying

to do. So, I do not want the privilege level 0 code to execute on the same stack,

because after I come back I will have access to all that has been done. In the

imagine password right this will take your password do a hash and then compute

there, so all those computations, all those received you things can done.

So, that is why x 8 6 says that you are a user fellow you use stack when you want to go to a

privilege level 0 when you want executive interrupt service routine, whenever when you

come up right when you are actually spooned as a process when you start executing you

will have your stack, then there will be three most stacks. Suppose I am a privilege 3 there

will be three most stack privilege 1 2 and 0, 1 and 2; if the interrupt service routine is going

to be for 0 then it will reuse your Pl 0 stack. As a process I have four stacks and my Pl 0

stack will be used by the Pl 0 code. If my interrupt service routine is Pl 1: for example, print f

f print f can be PL 1 while malloc can be PL 0. Or some exit can be Pl 0.

So, I will have PL 1 PL 0. So, depending upon what my system call is which privilege

level my system call is that corresponding stack can be used. So, what would have

happened? When you are used and interrupt gate and your code segment was at PL 0

your 0 stack could not have been set correctly. And that is why you are interrupt gate

intra slash trap gate would not have work correctly. Are you getting this?

So, when a processes is (Refer Time: 31:02), when we will doing the task switching I

will I will cover it in great detail when a process is (Refer Time: 31:09) these stacks

should be set. Once the stacks are set when I do an interrupt then these stacks will be

use. Now what I want you to do is, you use that you see there is an interrupt generated

go and see which what is the interrupt number, go to the code segment go and find the

privilege level of the code segment if it is 0 then you see whether there is a 0 stack set.

Where will that 0 stack set? It will be set in a task state segment.

So, we will come to it. First find out what is the privilege level of the interrupts service

and then you send me the code we will debug and send it back. Are you able to follow?

