Computer Organization and Architecture
Prof. V. Kamakoti
Department of Computer Science and Engineering
Indian Institute of Technology, Madras
Lecture - 31
Paging, Cache
So, just very quickly; so all of you know how paging is enabled.

Student: (Refer Time: 00:24).

Right, and then what are the precautions to be taken before enabling paging, |

thought in the class.

Student: (Refer Time: 00:38).

The page that enables paging should be identically mapped, then only the next

instruction to be executed.

(Refer Slide Time: 00:46)

D3k P 20 Ermnn [/ -9-54 [088
EEENEER nEn \.J

a| L@ oA

So, there is a page a000 to afff: three f's. And then starting from b00O there are this bfff,
c000 to cfff. So, these three are pages in the. So, let me call it as data page 1, data page 2.
Then there is something from d000 to dfff, then e000 to some efff, then f000 to ffff. So,

where are the page tables you have stated? Page table is from f000 to ffff and e000 to efff

is the page directive. And this is what you call as something like a control page

which has earlier segmentation and other things.

So, this page should be identically mapped, this page also, this page also, this page
also, this one, and this one, all are identically mapped. Then every other page the odd
page should be mapped onto this one b000 to c000 and the bfff and even page should
be mapped on to cfff. That is how you set up your page directory and one page. So, let
us say this is one general thing that you can, then things like you can access a very big
address but see that it is going to access only a somewhere in b000 or c000. Then jump
to a very large off set, but it will jump to the next instruction. Things like that you can tr.
And once you do this, you will also see some changes in the page table. That page is

accessed, that page became dirty, all these things you can do.

The next interesting thing is you actually make one page not available and try to access
that address, see that it goes to a page fault handler. And what will the page fault
handler do? It will go and fetch the page do lot of things that we will not do that
operating system will teach you. The page fault handler can just go and make that bit 1

and restart that instruction so that again you can restart and start executing that again.

So, you can create a page fault and make that page 1 and then come back. So, these
are all simple exercise that you can basically carry over and get an idea of how this
paging works very very simple exercises. You apply your mind half an hour you can
finish this not a great deal at. And the interesting thing after that there is set of problems
that we have been cooking right, so every semester we are getting some new set of
problems. So, those problems what we says you can once you have this infrastructure

solving these problems are going to be very straight forward, correct.

So, this is what is needed out of you, very very simple. You get these basic
building blocks get an understanding of a then whatever problem is uploaded in
the model just go and do that. And that is going to very straight forward. See |
am telling you while doing this you will understand entire thing about paging;
tomorrow the operating system goes they talk about anything about paging you
will understand what it is. How will the page fault handler work, how will this

exception will generated, all these things will be known.

So, you have to write a page fault handler. What will the page fault handler do? It
should find out where which page there is a fault and then it has to go and make
that one. So, when a page fault happens there are some control register actually

updated saying where that page fault which page, you can get some ideas.

Just go and look at this Intel manual 3.

(Refer Slide Time: 04:36)

_e _Edit View Window Help X
Bam- DB QB RE|O [| &
ORONEITIVE 18U o RORC N ETT EI N - W T Tools | Sign | Comment
s ©) e = lpw
} Address of page directory Ignored [C)‘T Ignored | CR3
=5 ®
R : & P ORISR
Bits 3122 of address Reserved | Bits 39:32 of P 3
‘ of 4MB page frame (must be 0) addressa" $ lgnored |G 11D A B T é \//\) 1 3ag'e
Address of page tab | oot |29 ?M 5.1 e
(ddress of page table nore age
i ; 3% 15[T]s |w|*| e
PDE:
Ignored Q| not
present
| PLL [Pl YR PTE:
Address of 4KB page frame lgnored [G |A|D|A|CI'y| /] /|1] 4KB
it D S|W page
[e
Ignored Q| not
present
Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
NOTES:
1.CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 32-bit paging.
2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, the number of bits reserved in
positions 20:13 of a PDE mapping a 4-MByte page will change.

You will get all this ideas. So, you have to find out where went wrong and go and make that
bit one and then restart it will work. So, in terms of this please look at; see in a page
directory entry right the first bit is a valid bit. If we have 1 that means, all these things make
sense, if you have 0 nothing means sense. So, this is a page directory entry and this is a
page table entry. So, you could also have 4 MB pages. In large data bases they will, now we
are starting of 4 KB. We can have the page size to be 4 MB also. So, we will not bother

about 4 MB here, we will just do 4 KB because that is trying to understand.

So, these two whatever page this is 114 page number of this volume 3
essentially talks about how the page directory entry looks like, and this also tells

you how the page table entry will. So, this is what is pointed to by sorry; CR 3.

(Refer Slide Time: 05:37)

File_Edt View Window_Help

£ croate -

SeRE@

B 66 couma = | 8

@) [na]rme| k[= @ (o]~

| & B (@ Tools | Sign | Comment

Bookmarks i (1)
Al 2B
—[& 1 chapter 1 vout

P v
¥ chapter 2 system
G| noveare
Overen
o 1P chapter3
Protected-Mode
Memory
Management
1 chapterd Paging
o Parroging
Moges and
Control Bits
[42 eraetical

[4332:8itPaging
[44pa paging
¥ 451432 Paging
1P 46 Access ights
47 page-fout
Bceptons
48 Acessedand |
Diny Flags
1 49 pging and
MemoryTyping
[410 Caching
Trnsiton
nformation
[411 neracions
Wi
Vitua Machine

tensions VM)
B 420

Paging for Vil

Table 4-3. Use of CR3 with 32-Bit Paging

Bit Contents
Position(s)
2G Ignored

3(PWT) Page-level write-through; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

4(PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

115 Ignored
32 Physical address of the 4-KByte aligned page directory used for linear-address translation
6332 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

This is what the pointed to by CR 3: the start of this page directory and this will point
though this. So, every page table its address will be there in the PDA entry. When the
first bit is 1 as you see here | am just rotating here, when the first when the first bit is 1
then it essentially means that this entry is valid otherwise it is invalid. And what are

these things let us go one by one, very quickly read slash write what is R slash W.

(Refer Slide Time: 06:19)

File_Edi View Window_Help

{
[1 chapter 1 ot
[I crapte 2 ystem
| weveawe
Ovetien
G| B chapter3
Potcted Mode

Maragement

¥ chapter 4 Paging

5 B 41pugig
Modes and
Contol i

[42 Hiensretical

Pigog
Structures: an
Oveniew

43328t ping

[44pag Paging

45 132¢ Paging

46 Acess Righs

47 puge-foit
Exceptions

[48 accessed ang
Oityfags

49 paging and
Memory Typing

& P a0 cacning

Tranaton
nformation

[41 meracions
wih
Vit Machine
tenson YW |

1 412 Using
Pagig for Vi

8 come NI 2 06O i |
@ [ns| | Iy [T = @ (o)) H B[] Tools | Sign: | Comment
sl PAGING

B D

Table 4-4. Format of 3 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit Contents

Position(s)

0 (P)r Present; must be 1 to map a 4-MByte page

1(RMW) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by this entry (see Section 4.6)

2(Urs) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page referenced by this entry (see Section

3(PWT) Page-level write-through; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

4(PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-MByte page referenced by this entry (see Section 4.8)

6(0) Dirty; indicates whether software has written to the 4-MByte page referenced by this entry (see Section 4.8)

7(PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8(0) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

LIS

9 " |E

Read write means, the first bit is Oth bit which is called bit 0 is the present bit. So, first bit is

read write, if 0 means writes are not allowed, 1 means write will be. Anyway a page

can be read for sure, but | may not allow you to write. So, for example, where do
you want in the absence of segmentation, suppose | have an architecture where

there is no segmentation; where do you want no writes.

Student: Code Segment.

Code segment, correct; code segment | do not want to touch or | could have
some parameters segments which | want to preserve, | do not want to program
to come in corrupt it. So, if | make certain segments as read only then lot of

security issue can be handled.

The second bit is user slash; if 0 means user mode access or not allowed
otherwise it will be allowed. User mode means three supervisor means 0 1 and 2
right, or O is supervisor 1 2 and 3 are user | do not know, you just check Section
4.6, we will go there but no, there is little it will takes time to back. And Section

4.6 | will tell you: | think user is 1 2 3 sorry; user is 3 and supervisor is 0 1 2 ok.

This page level cache, level write | will just check later. Just forget about 3 and 4
we will deal it when we do the cache. Fifth is access: after a loaded did | go and
read or write into it that is this. Sixth is the our famous dirty bit. Now then there is
something called 7; 7 is page size page size must be 1 otherwise this entry

references a page table; forget this also you just make it 1.

| will we will discuss about that later.

(Refer Slide Time: 08:20)

Fle_Edit View Window_Help

Bown (B D OO RE[0CTHRDG
@ [ns|me| kG @ @]| B G| @]

]

Ls

4

Eight is global: if CR4 dot PG is 1 determines whether the translation is global
otherwise ignore, this is also you ignore as because we are not going for 4 MB
pages. And there are some 9 10 11 3 bits which is ignored, which you can use.
Then there is page address translation again you can forget this bit m minus 20
30 32 of physical address of 4 megabit, so | forget that. So, these are the bits

you should know for sure; in this page directory entry and page table entry fine.

So, you set up this page table and start working on it, this is you see this.

P——
[B
T cuper oot
Tl
 Chapter 2 System
e

o R arvugng
Wodesand
Control Bits

[42 Hieraetical

433281 aging

[44paepaging

45 1n32¢ Paging
& 1P 46 Access ights

2 47 page-faut
Bcepions

1 48 Accessed and
iy Fags
4 agpagingand
Memoy Typng
1 410 Caching

Bit Contents

Position(s)

0(p) Present; must be 1 to map a 4-MByte page

1(RMW) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by this entry (see Section 46)

2(Urs) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page referenced by this entry (see Section

3(PWT) Page-level write-through; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

4(PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-MByte page referenced by
this entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-MByte page referenced by this entry (see Section 4.8)

6(0) Dirty; indicates whether software has written to the 4-MByte page referenced by this entry (see Section 4.8)

7(PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8(0) GIoD@I; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

1n9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-MByte page referenced by this

entry (see Section 49.2); otherwise, reserved (must be 0)'

(Refer Slide Time: 09:21)

File_Edit View Window_Help]

Bee- | 06 8RS0 A Customize = |
® @ [e]om| b G| & @ [ax]]| B B @ Tools | Sign | Comment
gjE ? Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table
=15 ot Aot
BN e Bit Contents
|t Position(s)
O
LR i 0P Present; must be 1 to reference a page table
. s 1 (RW) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)
Chapter 4 Paging.
. iy 2(Urs) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section
Contol Bis 46)
1 2 erwcrn
ol 3(PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
: Orerien entry (see Section 4.9)
a20tmgn
1 g:; ":;""p‘"“ 4(PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
ol e entry (see Section 49)
? o o " B "
kgl 5(A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)
]
ahaman| |© Iowred
ap TTZT?JZZ‘“ 7(PS) If CRA.PSE = 1, must be O (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored
Translation
o P | | 118 Ignored ®
i
Ll 31112 Physical address of 4-KByte aligned page table referenced by this entry
1 412Using

Paging for Vi

This is what you see, table 4.5 is what you should see for 32 bit what are your use, that
was | think that was for a 64 bit right that is a 4 megabit. So, we are doing four kilobit
page sorry this is for you should know. And this is for a 32 bit entry. So, there are lots
more of these paging things that will come under advanced computer architecture,

because we need to know lot more about operating system to appreciate things.

So, we will stop at this stage to give you a blueprint operating system. Once you
start studying operating system there you may need so many other things, you
come back to argue and learn lot of this. There is no point in learning so much of
Intel also; Intel is not our cousin or something. So, we will learn something about
thing to just understand what is how paging works foundation we need, we will

not focus too much on Intel the other processors.

As | told you 99 percent of the computing device in the same now uses on. So, Intel
is only 1 percent because all computing devices are mobile devices today. So, we
will not basically break our head so much. But nevertheless we should understand
how it works and this is a very nice system, but nevertheless you should really want
to bring their secure system | still believe, why | am still teaching this because down
the line if | really want to build up for a security then it is very very important that we;
| think Intel will succeed that. This level of double security, three tire security; you
have a security at segmentation, security at paging and then four levels that and

then | have LDT GDT type of security, then from that then paging.

So, see dead codes: what are dead codes? Dead codes are those which you cannot
actually when you execute the program right you can never get that part of the code
to execute. These are all potential you know worms or whatever malicious code,
because in some specific input pattern that fellow will start execute. So, we are
really do not know by just looking at a program or by even executing a program we
cannot do a security analysis, where there could be some even function of the code
and some combinations of the hidden part of the code, some composition like
function one then calls function two then function three then the behavior will be
different. We call function one then function three and then function two the behavior
will be different. It is like it composited in different way and you get different

behaviors. So, these are some very interesting things that would happen.

So security wise, | think this level three level of protection will be estimated. And
then there is | do not know what you will be learning in operating system right. One
of the important concept that we need to learn is about capability based operating
system. What is a capability based operating system? A capability based operating
system is one where for every object in an operating systems you have certain

access rights, and its relation with every other object is very well defined.

For example, processors and objects; | take one process say some demon- http demon right
you know what an http demon right it, basically runs the http right. So, if | take the mail
demon also http demon have some access. So, there are several access resources and |
have CPU, and | have memory, | have peripherals, | have ports, | have net cards, there are
several things. And then within part of your system itself there are some specific parts of a

code like file system management, process management etcetera.

So, this process what is this relation with ever other process, | need to have that
values it should be very well defined. If it is not well defined then that is where
the laps is starts. So, this fellow should not supposed to go; the http demon has
demon is has not going to support go and touch some part of your super, why
should it go and access your super block of your disk; there is something called

super block you learn it up in OS course. Why should | go and access, right?

Suppose, | say cannot access that rule is simply implemented then your security of
your operating system can be much more effective. But that type of capability based
OS we are not in the position to build. But what | believe is that if you go as regress
as Intel x 8 6 plus this we can build a really capability based device. Why do you

enforce the policies and trust on the hardware gone and implement it.

So, | put this polices, | will put this rules, who will implement | am very happy if the
hardware does this work wherein the software, because hardware is immune. | have
designed the other account | change the transistor and software is put it. So, that is one
reason why | still believe that x v 6 will we sort of the hardware when you want to start

building those type of fancy or those type of really secured operating system. Doubts?

Student: Sir.
Yeah.

Student: Sir, (Refer Time: 15:20).

Linux uses x v 6, actually one brief question of Linux is even there 8000 of
course which you can see. We ask to receive too many Linux code then you go

mad x v 6 go and look at x v 6 is the whole thing.

(Refer Slide Time: 15:37)

Xv6, a simple Unix-like teaching operating system

The st vermon of 36 1t 536

Introduction

062006 for MIT opestig 2 » Thispage. nchudng s

e rougher s of V. Lk the shedule nd

T e
be The e ke
el e On BSD and L syt OsX, Fhinaes compiler X
aplerand QEMU canbefoodon the .28 tocls puge
X6 lecture maerial
106528 the ecues ihe d1ent The lctres forsome The lectue notes e o

shedule puge

Unix Version 6

a2l i @g" B

So, there is database you can open it on see beautifully they have done.

(Refer Slide Time: 15:46)

Xv6, a simple Unix-like teaching operating system
Introduction

Xv6 sources and text

The latest xv6 souce IS aalale via

So, this is very well written index code, you will have first 10 pages of 12 pages is.

See lot of empty spaces and here it starts: that memory layout. Can you see LGDT?

(Refer Slide Time: 16:13)

0503 asn volatile("cld; rep stos]® : 0553 asn volatile("now X0, Wgs” & : " (V));
0504 "u" (addr), "sc" (cnt) ; 0554 }

0505 0" (addr), 1" (ent), "a" (data) ¢ 0555

0506 “mesory”, "cc"); 0556 static inline void

0507 } 0557 cli(void)

0508 0558 {

0509 struct segdesc; 0559 asm volatile("c1i");

0510 0560)

0511 static inline void 0561

0512 \gdt(struct segdesc *p, int size) 0562 static inline void

0513 { 0563 sti (void)

0514 volatile ushort pd[3); 0564 {

0515 0565 asn volatile("sti");

0516 pd[0] = size-1; 0566 }

0517 pdl1] = int)p; L o567

0518 pd[2] = (uint)p 5> 16; 0568 static inline uint

0519 0569 xchg(volatile uint ‘addr, uint newal)

0520 asm volatile("lgdt (X0)" i : "r* (pd)); 0570 {

0521 } 0571 uint result;

0522 0572

0523 struct gatedesc; 0573 // The + in “an" denotes a read-nadify-rite operand.
0524 0574 asa volatile("lock; xchg! %0, X1

0525 static inline void 0575 " (*addr), "sa" (result) :
0526 Tide(struct gatedesc *p, int size) 0576 1" (newal) ¢

0527 { 0577 5}

0528 volatile ushort pd(3]; 0578 return result;

0529 0579 }

0530 pd[0] = size-1; 0580

0531 pd(1] = (uint)p; 0581 static inline uint

0532 pd[2] « (uint)p 5> 16; 0582 rer2(void)

0533 0583 {

0534 asm volatile("lidt (%0)* : : "r" (pd)); 0584 uint val;

0535 } 0585 asm volatile("mov] AXcr2 X0" : “ar" (val));
053 0586 return val;

0537 static inline void 0587 }

0538 Ter(ushort sel) 0588

0539 { 0589 static inine void

0540 asn volatile("Ter 0" ¢ ¢ "t (sel)); 0590 Ter3(uint val)

0541 } 0591 {

So, LGDT, so a s system is assembling so they are using LGDT. LIDT, LTR road
task resistor, clear interrupt, STI move instructions, GS register all these things.
That means, what Linux uses lot of your assembly instruction, | am just proving.

Just do not think that just delete see CR 3 everything is.

(Refer Slide Time: 16:53)

TUS AR R B e o @ it WA

s csalmiteda 62202016

Sep 2 15:21 2016 xv6/mmu.h Page 3

0800 #ifndef _ASSEMBLER

0801 // Segnent Descriptor

0802 struct segdesc {

0803 uint 1in15.0 : 16; // Low bits of segsent linit

0804 uint base_15.0 : 16; // Low bits of segment base address
0805 uint base_23_16 : 8; // Middle bits of segnent base address
0806 uint type // Segnent type (see STS. constants)
0807 uint st 1 7/ 0 = systen, 1= application

0808 uint dpl : /1 Descriptor Privilege Level

0809 wintp: 1 /1 Present

0810 uint 1in_19_16 // High bits of segment Timit

0811 wint avl ; // Unused (available for software use)
0812 vint rsvl /1 Reserved

0813 vint db : /1 0 = 16-bit segnent, 1 = 32-bit segment

0814 wintg:1; // Granularity: imit scaled by 4K when set
0815 uint base_31.24 ¢ 8; // High bits of segnent base address

0816 };

[y

0818 // Normal segment

0819 #define SEG(type, base, Tim, dpl) (struct segdesc) \
0820 { ((1im) >» 12) & OxFFFF, (uint)(base) & OxFFFF, \
0821 ((uint)(base) > 16) & OxFF, type, 1, dpl, 1, \
0822 (vint)(1im) >> 28, 0, 0, 1, 1, (uint)(base) »> 24 }
0823 #define SEC16(type, base, 1im, dpl) (struct segdesc) \
0824 { (1im) & OxFFFF, (uint)(base) & Ufof

0825 ((uint)(base) >> 16) & Oxff, type, 1, dpl,

0826 (uint)(1im) >> 16, 0, 0, 1, 0, (umx)(hase) » U I
0827 #endif

0828

0829 #define DPLLUSER Ox3 // User DPL
0830

0831 // Application seguent type bits
0832 #define STAX 0 /1 Executable segnent

0833 #define STAE O // Expand down (non-executable segments)
0834 #define STAC 0 // Conforming code segnent (executable only)

% wnmahnectipat A

aga
Sep 215:21 2016 xvé/mmuh Page 4
0850 #define STS.IG32 OxE // 32-bit Interrupt Cate
0851 #define STSTGR OxF // 32-bit Trap Gate
0853 // A virtual address '1a’ has a three-part structure as follos:
0854 //
0855 // 10- 10 12.
0856 // | leumwl Page Table | Offset within Page |
0857 // | Index Index | |
0858 //
0859 // \e== POX(va) ==/ \=== PTX(va) —/
0860
0861 // page directory index
0862 #define POX(va) (((uint)(va) >> POXSHIFT) & OX3FF)
863
0864 // page table index
0865 #define PTX(va) ((Quine)(va) >» PIXSHIFT) & 03FF) K
0866
0867 // construct virtual address fron indexes and offset
0868 #define PCADDR(d, t, 0) ((uint)((d) << POXSHIFT | (t) << PTXSHIFT | (0))
0869
0870 // Page directory and page table constants.
0871 #define NPOENTRIES 1024 // # directory entries per page directory
0872 #define NPTENTRIES 1024 // # PTEs per page table
0873 #define PGSIZE 4096 // bytes mapped by a page
0875 #define PGSHIFT 2 // loga(PesIze)
0876 #define PTXSHIFT bt // offset of PTX in a linear address
0877 #define POXSHIFT 2 // offset of POX in a linear address
0878
0879 #define PGROUNDUP(s2) (((s2)+POSIZE-1) & ~(PCSIZE-1))
0880 #define PGROUNDDONN(a) (((2)) & ~(PGSIZE-1))
0881
0882 // Page table/directory entry flags.
0883 #define PTE_P 0x001 // Present
0884 #define PTEW 0002 // Writeable g
Sowsl | X

So, if you want actually learn see this. See this is segment descriptor limit, waves,
base then type and somewhere so limit 19 to 60 this is your segmentation. These
are all completely used. So, if you can actually go through this. Now it is all go to,
this is your context of your process task state. So, see you have entries for all your
registers right eax, ecx, ede, vx and then your csss ds; | told you right CR 3 that is
the entry fist you are also see in your task state. So, for every task [FL], so for every
task you can have your page directory base. | told you in the morning right. So, this

is that. So, this is context of your process and it goes on.

So, the entire course, this is the first line of code boot asm dot s. So, the first two

will be some entry here, so it goes.

(Refer Slide Time: 19:02)

Sep 215:21 2016 vé/entry.S Page 1 Sep 215:21 2016 w/entry.S Page 2

1100 # The xv6 kernel starts executing in this file, This file is linked with 1150 mov] S(V2P_WO(entrypgdir)), Xeax

1101 # the kerne C code, S0 it can refer to kernel syabols such as main). 51 ol eax, %rd
1102 # The boot block (bootasn.S and bootsain.c) jusps to entry below. 1152 # Turn on paging.
103 153 movl %r0, %eax
1104 # Multiboot header, for multiboot boot loaders 1ike CNU Grub. 1154 orl $(CRO_PG|CROWP), %eax
1105 # hetps/ /. g tdboot/multiboot. heal 55 ol Keax, %rd
1106 # 1156
1107 # Using GRUB 2, you can boot xv6 from a file stored in a 1187 # Set up the stack pointer.
1108 # Linux file system by copying kernel or kernelneafs to /boot 1158 mov] S(stack + KSTACKSIZE), Yesp
1109 # and then adding this menu entry: 1159
110 # 1160 # Jump to main(), and switch to executing at
1411 # menuentry "xv6" { 161 # high addresses. The indirect call is needed because
1112 # dnsnod ext2 1162 # the assenbler produces a PC-relative instruction
1113 4 set roots" (hd0,msdos1) 1063 # for a direct jump.
114 # set kernels'/boot/kernel’ 164 mov Smain, Seax
1115 ¢ echo "Loading ${kernel}..." 1165 jop *Heax
1116 # multiboot S{kernel} S{kernel} 1166
1117 # boot 1167 .comn stack, KSTACKSIZE
s 4} 1168
119 1169
1120 #include "asn.h" 1170
1121 #include "nemlayout.h" un &
1122 #include “"mmu.h" un
1123 #include “paran.h" 73
2 M
1125 # Multiboot header. Data to direct multiboot Toader. 1175
1126 p2align 2 1176
1127 .text urn
1128 .glob] multiboot_header 178
1129 multiboot_header: 179
1130 #define magic Ox1badb002 1180
131 #define flags 0 181
1R long magic 182
133 . long Flags 1183
134 long (-magic-flags) 1184

So, this is how you enable paging here see: movl cr 0 eax or | mov as eax cr 0
right. So, this is the point where you are enabling paging, turn on paging. So,
whatever you did now operating system also does. So, | am just giving you a

one to one mapping of what is happening, then it to jumps to eax.

So, what do you did exactly in your lab right for enabling paging that is there in line

number 1153 to 115. If you understand x v 6 then you can do and directly play with the

corn. There are some 10 exercises here you understand all the 10 exercises you can go
and play directly with the corn. See clash lab: lab 1 to lab 7. After this right, after your

current course on the operating system goes best thing is to take x v 6 understand it

completely and the take this compile this into assembly and boot your. Now you are booting
with that USB right, boot with x v 6 and see how it is working. And then go and change them
scheduling and see how the counter works. So, that will be the (Refer Time: 19:59). You

know one full semester you should do fully operating system, (Refer Time:

20:03) complier networking and all these things.

But then if you do that you will become real OS data; that is something. Because
you really got a machine to boot scratch and come up. So, go and read this x v

6. This is real operating system.

Student: Sir.

Yes, you are only using trap gate right so for.
Student: (Refer Time: 20:34).

(Refer Time: 20:45).

Student: (Refer Time: 20:46).

You should have used only trap gate, you have used task gate because the template.

Student: (Refer Time: 20:51).

Why, what do you mean by implement the trap gate? Just you have to go and
make that IDT entry as whatever. You have to just change the bit type there that

is all then it becomes a trap gate.

Student: (Refer Time: 21:08).

Hidden work on, send the code that does not work. See the task gate will be
thought in assignment number 5 and | will also explained why task gate is
necessary in the context of in interrupt service routine. That | will explained that
is something called double fault and for that we need to have a task gate. But for
all practical purpose fort your intra service routine that you have written as a part
of your third assignment; task gate is trap gate is enough; trap or interrupt gates

are enough. Task gate you should not use means you can use, but.

Student: (Refer Time: 21:55).

Because your interrupt gate, the privilege level of your privilege service routine.
Student: (Refer Time: 22:11).

You set it to three, and what was the code segment privilege level? So, the
interrupter descriptor they will work point into you fourth segment right. What

was the privilege level of the code segment?

Student: Zero.
So, how will it work?
Student: (Refer Time: 22:35).

So, it will not work, right. So, we will teach you about task gate in the fifth
assignment. So, a trap gate for an interrupt gate should have worked in your

third assignment, if you did not work then send us the code | will clarify it.

Student: Sir.

Hm.

Student: (Refer Time: 23:06) of the entry of the IDT, that is used such that the (Refer
Time: 23:13) segment that is trying to access it will have the privilege (Refer Time:
23:18) than that of the entry of the IDT, right.

Right, so there are several issues here, | can only talk about; | will give you a

brief of what is happening.

(Refer Slide Time: 23:30)

T Yot s T
VDAHGPLZ L0 Corm J[[FE2-0-SHF-[¢

—> Vikde jﬂ;@f

Gy

l-k Gh)es
P Py G o e

7L-3

S

See if | am a privilege k code then my stack has to be privilege k. Stack cannot be k
plus 1 or k minus 1. So, this is very important. This is what (Refer Time: 23:46) 6 will

ask for. So, if | am a privilege k code my stack also will be privilege k.

So, if | am a privilege 3 code the stack | am going to use should also be privilege 3. It
cannot be privilege 2 or 1, if | am a privilege 2 code the stack should also be privilege 2.
It cannot be 3, it cannot be 1 or 0, please note that. It is unlike a privilege level 3 code
can access a code segment of privilege level 3 and privilege level 2 can access 2 and 3,
but for stack if | am executing a privilege 3 code the stack should also be privilege 3. It

cannot be privilege 4 or that descript are should have privilege 3.

So, this is how x 8 6 is define the reason is as follows.

(Refer Slide Time: 24:46)

)
WOHG AL DD Ctwrm |77 -@- 4P| IR
EEENEEE] %

Now, let us say | am executing a privilege level 3 code; there is one instruction which
generates an interrupt or trap. Now what will happen is this will go to the interrupt. So, let me
state is giving you interrupt 30. So, | go to the IDT table, | go to the 13th entry and here |
have a code segment selector and then there is some privilege level here. This privilege
level should be at least 3 then only this fellow; if this was PL 3 this was also be 3, if it is PL 2

then this should be 2 or 3 then only this interrupts itself will be executed.

Now this will point to you a code segment, if this code segment is set privilege 0. This
code segment this is a selector right this will say some 15 or something. So, 15th entry
in your not in your IDT, this will be a 15 entry in your GDT or LDT depending on that.
There you will go; here there will be a base limit etcetera. And then there will be a
privilege level. This privilege level is 0. That means, now when it 3 code it is executing

because of an interrupt | am going to execute a privilege level 0 code.

So, what you will do is you will have a stack define for every process that | am
creating, | will have 3 stacks or 4 stacks. Every process | am creating | could
have 4 stacks: one stack is at privilege 3, another at privilege 2, another at the
privilege 1, another will be privilege 0. If this interrupt service routine in is at

privilege 1 or 0 right, then this stack either the zeros stack or the ones stack will

be executed depending on what the privilege level here.

So, for all the processing of your interrupt service routine this PL 3 stack will not be
used your Pl 1 or PI 0 stack will be used; depending on what the privilege level. So,
why is this done? Because, | do not want the system stack and the user stack to be
the same. | am a program, | am asking for a service from the operating system that
is called a system call; | say print f scan, | go and ask many many things from the
operating system. In c there is a command called system right, are you aware of this
system and | can put whatever | want. So, essentially | transfer control to a system:

malloc for example is a system call, f open is a system call free is a system call.

So, when | call the system, the system call should not execute on the same stack as
my. Then what will happen after | return? | have access to the stack; | accept user
level process has access to the stack. So, | will start knowing more about what the
stack contains right. So, | will start having more ideas about what the stack is trying
to do. So, | do not want the privilege level 0 code to execute on the same stack,
because after | come back | will have access to all that has been done. In the
imagine password right this will take your password do a hash and then compute

there, so all those computations, all those received you things can done.

So, that is why x 8 6 says that you are a user fellow you use stack when you want to go to a
privilege level 0 when you want executive interrupt service routine, whenever when you
come up right when you are actually spooned as a process when you start executing you
will have your stack, then there will be three most stacks. Suppose | am a privilege 3 there
will be three most stack privilege 1 2 and 0, 1 and 2; if the interrupt service routine is going
to be for 0 then it will reuse your Pl O stack. As a process | have four stacks and my PI O
stack will be used by the Pl 0 code. If my interrupt service routine is PI 1: for example, print f

f print f can be PL 1 while malloc can be PL 0. Or some exit can be PI 0.

So, | will have PL 1 PL 0. So, depending upon what my system call is which privilege
level my system call is that corresponding stack can be used. So, what would have
happened? When you are used and interrupt gate and your code segment was at PL 0
your 0 stack could not have been set correctly. And that is why you are interrupt gate

intra slash trap gate would not have work correctly. Are you getting this?

So, when a processes is (Refer Time: 31:02), when we will doing the task switching |

will I will cover it in great detail when a process is (Refer Time: 31:09) these stacks

should be set. Once the stacks are set when | do an interrupt then these stacks will be
use. Now what | want you to do is, you use that you see there is an interrupt generated
go and see which what is the interrupt number, go to the code segment go and find the
privilege level of the code segment if it is O then you see whether there is a 0 stack set.

Where will that 0 stack set? It will be set in a task state segment.

So, we will come to it. First find out what is the privilege level of the interrupts service

and then you send me the code we will debug and send it back. Are you able to follow?

