
Computer Organization and Architecture
Prof. V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture – 29
Part 1

Multilevel Paging

So yesterday we did this multi level paging where in size of 4mb for the page can be

reduced to one page directory which is 4 kb, and then as much as page in page tables

that are necessary as and when we populate the memory, we can take those page

tables that are relevant and the other page tables that which for some addresses which

are not used I may not even have the corresponding page tables right and.

So, I could have a dynamically expanding and shrinking you know page table

mechanism, which is enabled by this multilevel paging. And now please note that as I

told you the page directory the page tables are also put on pages a page directory will fit

into one page, each of the page table also fit into one page right and this is perhaps one

of the reason why we decided that the page should be 4096 bytes right. So, that I could

we could manage all these affairs there and in addition we also saw that the 12 bits that

12 least significant bits need not be populated it is all zeros, because every page starts

at a 4096 by boundary. So, these 12 bits can be basically used for storing some

information and 2 important information that we put there one was the valid bit and

another is the dirty bit we may we may call it clean bit so.

(Refer Slide Time: 01:52)

So, there is a logical address this is actually generated by whom the compiler, this is

added with the segment base, this is done the OS sets this architecture adds this we get

an effective address. Now in this effective address this comprises 32 bits 10 10 12, now

there is CR3 which gives you the physical address of the page directory, this is the page

directory. Now I used this these 10 bits I index into this table to get the start address of a

page table this will give me the start address of a page table to this I add I use these 10

bits to offset into this, and I get this I get the page address to this I sorry this is 4096

bytes. So, this I add this offset and this is actually my address whatever.

So, this particular location this is the way we go with the page transition mechanism,

and to get rid of multiple memory accesses right what we did in this case of segment

based we had a shadow resister, here we will have another content addressable

memory cam called translation look aside buffer. Translation look aside buffer I look

aside the translation I do not want to go through this translation. What this will store?

For every page address let me call that that 20 bits right page address it will store.

So, I can call it as the virtual page address it will store the physical page address

right. So, for every for every input for every 20, 32 bit input for every 20 bit input

actually we are interested, this will store this 20 bit address where the page starts.

So, I can just go give this 20 bits as input to this, I will get these 20 bits as a along with you

know all these extra bits the security bits, and I can basically take that physical page

address right. So, I get this address. So, to this I can add these 12 bits and directly go

and access. So, one shot I will get I will move out of this I will get this 20 bits here, but

you when you yesterday afternoon you would have seen that in addition to these valid

bit and in the dirty bit, we have also store the privilege levels right. So, as a privilege

processor as a processor of privilege level 0, I may have access to some pages if my

privilege level is 3 for example, and this page is 0 then I will not be allowed to access

this. So, I am enforcing lot of security through the way I can access these pages.

So, in addition to these 12 bits we will have something like in addition to these 2 bits we

will have something like the privilege levels stored here. So, I could have privilege levels

and these privilege level can be set to 0 1 2 and 3 and as we have seen earlier the 0 will

be the kernel process, that 3 will be the user process, this 1 and 2 can be some middle

middleware. So, a process can be a user process it can be a kernel process. So, I can

set some privilege levels and these pages so, that I can say that if I said this privilege

value level as k, any process that k or less than that numerically less than that. Please

note that 0 is the most powerful 3 is the least powerful. So, any process with privilege

level k or less than k can basically enter can basically access that hierarchy.

If I set this as 2 and a 3 level process wants to access any address right which passes

through these 2 then it will be stopped. So, there will be a general protection fault GPF

you know you have got about GPF right it is fault number 13 12 or 13. So, there will be a

general protection fault that will be you know given basically because you are trying to

violate certain privilege level properties. So, essentially what you are saying is that in

segmentation we had privilege levels and we are trying to protect segments, similarly

the paging mechanism can also be used to ensure protection and security by setting up

these privilege levels right. So, we will go do an elaborate discussion on how that 32 bits

are organized or how the 12 bits are basically used and then we will see something

more in the next Mondays class. So, I will go through that in full detail.

Now,. So, typically what the operating system will do is that there is a, we now we have to

start address in paging from a security perspective. So, that we get a better deal of this

better overview of this. The paging mechanism the page table and the page addresses all

will be set by the operating system, and first before enabling paging the operating system

has to set up these page tables correct right it has to create this. So, the first 2 assignments

you have done so far, you have not enabled paging there, you have just you

know it was just in the protected mode and you have just used segmentation. Now

you have been used for in the absence of the paging you are virtual address space

and your physical address space are same there is no translation you are you

generate an effective address you generate an effective address has we see here,

and the same effective address is basically used as a physical address there is no

translation that happens in between. But the moment paging is enabled then this

effective address goes through that translation procedure right.

So, there is a very simple way of enabling paging it is to go and set one

particular bit in your CR 0 register. So, I think that would that would have explain

yesterday. So, you go and set one particular bit in the CR 0 register, and you are

paging automatically gets enabled.

So, before enabling that paging we need to go and do lot of things, one of the thing

is we need to the operating system has to set up this page tables setup set up this

page directory and the necessary page tables, it has to load it into some part of the

memory and when while it is doing it is basically paging is not enabled that point.

So, it is doing with the segmentation there. So, when you look at in your virtual

address space where will this page directory page table etcetera will be stored it will

be stored in a segment which is of privilege level 0. Basically your kernel will be

responsible for setting up these page directly and page tables right. In other way

when a user process in the fourth assignment you will be doing what we call as task

switching sorry in your fifth fourth assignment correct. So, no fifth assignment you

will be doing the last assignment you will be doing task switching, where you will be

moving from a privilege level 0 code to a privilege level 3 code.

So, when you start executing a program what essentially happens in your architecture.

So, a shell can be a privilege level 2 or 1 or 0 you have a this shell right. So, now, when

you start executing a program on that sell basically then it can it switches to a privilege

level 3 right. So, how do you switch from say privilege level 0 to a privilege level 3 so,

these are some very interesting things, that we will study in your fifth assignment before

that. So, let us assume that there is a privilege level 3 task right. Now the privilege level

3 task cannot go and change these page table in sense what we are assuring here is by

having this segmentation, we assure that the page table and the page directories are

completely maintained by the kernel, and the user process cannot go and temper with it.

If the user process can tamper with it then all that we are talking about inter

processor or intra process protection everything will go for it loss correct right.

So, to start with the first part of your assignment would be that, the first part of enabling

paging will be something like you go to the you have a segment which is privilege level

0 in that privilege level 0 segment, you go and fill up all your page directory entry and

your page address entry page tables, whatever is necessary for you the operating

system has to fit. Then it will go and fill up this CR 3 with the starting address with the

starting address of the page directory it will fill up this CR 3 the instruction that can go

and fill up CR 3 that is also a privileged. Instruction we all know what a privileged

instruction is execute it sets of the page directory setup a stable that is necessary for the

program then yes right what is the privileged instruction it can be executed only when

the privilege level is 0. So, the kernel is now executing it is sets up the page directory, it

sets up the page table that is necessary for that program or that process then what it

does it goes and fields of CR 3 it fills up CR3.

Now then it goes and enables paging, what do you mean by enabling paging? You

go and make that bit one. So, once that is one immediately what will happen the

next address that you are going to next address you are going to put for fetching

and instruction or the next address you are going to load for fetching data everything

will start moving through right moving through this page translation mechanism, till

then you are effective address was equal to your physical address the moment I

enable this bit you are effective address now will become translated to this physical

address. So, it is starts moving through this translation mechanism. Are you able to

follow the procedure how paging is going to be enabled so, that clear.

Now, let us so, but one thing even after I enable paging nobody can come and tamper with

CR 3, if I want to go and play with that paging first thing is I need to have access to the page

directory page table etcetera, but since these are all fixed into a privilege level 0 segment,

even at this level when you even generate an effective address and try to access at that

point itself architectural will stop you are going outside into the segment. Even before I go

through the translation process, your effective address you are generating an effective

address and that will be in same segment which is not defined for you. So, you cannot even

go and access that you will not even generate because your segment when I am a user

level process my data segment and stack segment code segment etcetera, will

be pointing to whatever is allocated to me right. I cannot go and access anything

outside the data segment or core segment. So, that is on first level protection.

So, I cannot go and touch anything outside of what is allocated to me.

The next thing is can I go and change the CR 3 and make a page table internally within

the segment that is allocated to me, that also I cannot do because CR 3 is a privileged

instruction. So, I cannot go and change the value of CR 3 nor could I go and change the

page table or page directory because all are in segments we basically utilize

segmentation here right all are in segment switch I cannot touch right. So, this is how I

can ensure that I use a 3 process, it is going to use the page table, but it cannot go and

middle with the entries in the page table is it. Are you able to follow right.

Now, let us go next step. So, I am. So, let us say I am. So, there will be one

code. So, this is very very important right. So, let me say that there are some

instructions which are stored at.

(Refer Slide Time: 16:00)

Let us go with your 0 x a 1000 a 1005 like that right. Now let us say that this is

the instruction that is enabling paging so; that means, a 1000 a or a 1000

something this is the instruction that is enabling paging though the moment this

instruction enable paging what will be the pc what will be the program counter

after this instruction gets executed the programmer counter. Will be a 1015, what

will be the next instruction that is going to be executed will it be a 1015.

Student: (Refer Time: 16:51).

It will be some a 1015 till now a 1000 a was a 1000 a, now let us assume the next

instruction is a 1015, now a 1015 will be pointing to what it will go through this entire

translation mechanism, and this may give me some right it may give you something

else. So, what should what care should be take. We cannot write programs like that

right after this the next fellow will be somewhere I will be in Chennai next fellow will be in

san Francisco I can write programs like that. So, what care should we take here?

Student: (Refer Time: 17:39).

Yeah. So, the page in which the instruction that is enabling paging is going to be

there that page should be identically mapped right. This is one very very important

thing that this is this is a very practical you know point right the page which carries

the instruction that is going to enable paging should be identically mapped.

(Refer Slide Time: 18:07)

Now, let me say that a virtual address space will be filled this is filled with OS

there will be something for the OS, all the system calls all these things will be

there for that then there will be some set of locations for the peripherals, you

have already seen this in your third semester right we have some memory

allocated for the peripherals, what is that called.

Student: Memory mapped.

Memory mapped.

Student: Io

Io right there is. So, we handle the peripheral as if I am handling memory. So, some

addresses will be registered for this. So, those things should be there. So, this

peripherals are going to be there. Then let me say I have some space allocated for P 1

then some space allocated for P 2, then some space allocated for P 3, and then there

are some more empty space. Now note that when P 1 is executing I could have a page

paging mechanism right I could have a paging mechanism where it will see only this and

this right, why should P 1 see this P 2 and P 3. So, I could have in my. So, I have a page

table right page directory and page table. So, in the page directory I will put pages

corresponding to this I will have valid entries here. So, if the if at all my wide why do I

need the operating system when I am executing a program? Because I may want to do

print f I want to do some system call I want to do so many things, why do I need a

peripheral? Because I want to do print f on the screen I want to read and write from a

disc I have do an a scan f for a print f. So, all these things I need. So, as P 1 please

note this is the basis of how Linux is going to how Linux has developed.

So, as a process P 1, I need to have access only to this OS plus peripheral and this

P 1 I do not need access to P 2 and P 3. So, when P 1 starts executing I could have

a page directory and a page table setup I could have an exclusive page directory

and page table setup within this memory within this OS part. So, the page table

page directory will be somewhere here. In which only OS and peripheral section and

P 1 section are absorbed or exposed when is switch from P 1 to P 2, I could have

another page directory something here different some other spot there which will

expose me only which will expose me only this OS and peripheral, but P 2. So, P 1

will not be even exposed. So, as a P 2, I will not be in a position to access that data

and thing of P 1; because in you are page directory itself these should be invalidated

those pages. So, they will be. So, in the page directory let me say that. So, if I take

full fetched page directory in which I have entries, let me say this entry will give to

some page table which will point to OS plus peripherals.

Now, this entry will give to another page table which will point to P 1, this will give me

another page table which points to P 2 right. When I am creating something for P 1 I will

only make this and this available and I will go and make this valid bit as 0, I just make

this valid bit as 0. So, if P 1 tries to access this entry if it is going to generate address

which is going to touch anything here, immediately it will give you a general protection

format because it is a invalid it will give me a page fault right because it is a invalid page

it will be a page fault. Now a page fault handler will go and find why are you going there

right it can go and carry are you are you are you able to appreciate this.

Now, when I go from P 1 to P 2 I can do a context switch from P 1 to P 2, I can make

this one. So, I will enable this I will make this 0. So, P 2 cannot go and look at this right

you are able to understand this. So, I can use one single page directory where I will start

as an operating system, I will start playing with the zeros and ones there right. I will just

start playing with zeros and ones there and I can see that P 1 will not touch P 2, P 2 will

not touch P 1 right are you able to get what I am trying to say yes or no.

Student: Yes sir (Refer Time: 23:27).

It cannot be.

Student: Ok.

So, I do not have allocate the same fault.

Student: (Refer Time: 23:49) in our case like in the lab case memory segment can be.

No no, but that is also not for the single processor you have only one program.

Student: Page length is 4 0 9 6 bytes.

No you are data sorry your data and stack and code are all different segment they are.

Student: But.

But the code of you and the code of him cannot share the same page we do not

allocate like that the operating system will not operating system will responsible

for it. So, you are writing a code each writing another process his code and your

code will not share that 4096 bits.

Student: So, some like in one page it is some parts get allocated to one process, but

whole page gets (Refer Time: 24:58).

That is call it page fragmentation we cannot we do not do that, so that minimum

4 1096. So, we will discuss all these things right that is going to be a very say

interesting question and I am try to answer right.

Why 4096 right I will given you one answer there are 3 more answers now you

understand. So, have to just basically play the bits valid bit and invalid bit to see that

P 1 is protected some P 2 2 is protected, now that is also not enough because what

will happen is that when P 1 is executing if I just play with this valid bit then P 1 can

actually go and find out where P 2 is allocated are you able to follow I do not I want

to also make that secret. So, what will happen is for when P 1 is executing I will

have a see I will have one page allocated for the page directory alone the pages will

be there. So, when P 1 is executed there will be one page directory. So, these

pages are there will be one page directory one which will point to this and this when

P 2 is allocated there will be another page directory 2 I will just spent one page for

just this paging page directory 2 which will point to this and this is not point of view.

So, for every pair every process I could have one page directory right which will point to

the relevant pages necessary for that process and as I shift from one process to another

process I will also change the page directories because my context which has to be fast

I move from you to need to an P 1 to P 2 then that context which has to be extremely

fast. Already there are a lot of things when we when we do the fifth assignment we will

find out that there are a lot of issues in doing the context switching there are lot of things

that will trouble you that will make you slow.

Context switching in general is a very slow process. So, I do not want to add to the

latency, but what I am trying to do is when I am contest switching from P 1 P 2 I will

have 2 different page directories the top one for P 1 and for P 2. So, when P 1 is

executing the page directory for P 1 will be loaded, will be will be used and that page

directory will have entries pointing to those relevant pages for P 1 when I move to P 2 I

will have a page directory is exclusively which will point to only those P 2 right are you

able to get this. So, I can have a combination it may not just top it to the page directory

page directory plus a set of pages also I could I could manage it like that ok.

So, now that is why when we move from one process to another process right, when you

look at the context of a process what is the context of a process? so, what is general what

is the definition of a context of process context of a process is there is the

minimum information that I need to store. So, that I restart the process exactly at

the point where I left this answer. I want from you not register right context of a

process is that information that I need to store so, that could restart the process

exactly at the point where I stopped it right.

Now, when we look when we go to the third fifth assignment right, we will now find out

that in the context of a task process we will have this CR 3 also right. So, the question

now I want you to go if you are interviewed by AMD or Intel, go and ask why CR 3 is

there in that context you ask this question. The reason why CR 3 is going to be there is

because the CR 3 for process one and the CR 3 for process 2 are different I will get 2

different page directories and reason why I need to have page directory is, I can now

are you getting are you getting a feel of what we are trying to do right.

Now, let us go bit historical about why it is why should I so, the question now is

should I ensure protection through paging or should I ensure protection through

segmentation. You are already ensuring some protection, and segmentation why

this 2 party authentication here why do I go on keep on everywhere OS say security,

security, security because it drives the matter right. So, why should I have should I.

So, Linux if you if you are actually studied I do not know whether we going through

the x v 6 next semester, I will talk to your instruction. When you actually look at the

basic kernel of Linux, the start it will say it will give you one segment which is 4 GB

inside there you can read write, you can dance, you can do everything there. So, it

is one segment full segment which is some privilege 3 all the protection it ensures it

through only paging right it will give you. So, the moment you switch on the system

when Linux starts booting, the basic kernel assumes that you have a very large over

4 GB segment which is read write double. So, it I it puts one code segment it is 4

GB it overlaps the data segment on that which is read and write able.

So, it is execute read write everything on 4 GB segment. It will take all the protection

gets through this paging. So, between the point where things comes up and by the time

this paging comes up that intermediate duration there I have a security venerability,

where I can do put my root gate and all these things you understand where I can in fact,

a Linux system this is one part I give a open segment which I can do anything with that.

So, that when I am generating the effective address please note that in the Intel

architecture, I any other modern architecture I cannot enable paging without

enabling segmentation right segmentation is by default right.

Why I now say that I will have one very large segment of privileged level 3 which can be

read writable and executable because I do not want anybody to stop anything at this

stage. So, if I want execute if I want to do anything that is completely taken care of. The

segmentation will not come in the way segmentation has left of let you of do whatever

you want right. So, all the protection mechanism etcetera I am getting it through paging

and that is perhaps one of the reason why you know the context switching need to have

different page tables for different paging translation mechanism for different processes.

