Computer Organization and Architecture
Prof. V. Kamakoti
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 26
Lab 3: Virtual Memory

(Refer Slide Time: 00:22)

WKL 4 20 Eree | [JHL- 054
EEEEEER L A2

N 5
/9'\6\‘0@\
.

e

=
\‘y(}j&ﬂ $
¥

(JM\

Good morning. We will now carry on with what we call as multi core systems. But as we
proceed towards multi core system, what is important there? What is the difference between
a single core system and a multi core system, from an organisation point of view or a from a
architecture point of view? What is the new addition that we have going to get? When you
look at a multi core system we will have several super scalar processes, several cores let
me call it c 1, ¢ 2, ¢ 3 till c k. Today k can be as big as 32. Now there are several instead of
one super scalar (Refer Time: 01:01) out of order branch predictor thing that we have seen
we would have 32 such now what in addition? So, what should be learned in this multi core?

The most important thing is, how all these things can work together. And the way they work

together is by passing actually messages between them.

One thing is we can do a traditional thing like you know | could have 32 different

activities in your mobile phone right. So, you have 32 one, one mail server is running,

one mail demon is running, one whatsapp demon is running, one message SMS
is running. So, each one can be put on to one, one core and it will be just
running there. And whenever it is awakened, you get a message it will awakened

it will do some activities.

So, like that several sequential applications, but instead of one CPU executing all the
sequential applications | will just distribute this work load across these 32 processor or 8
processors. This is one easiest way of doing. So, what do you achieve by having a multi
core processor, | have several task totally unrelated independent task like whatsapp and
Gmail will talk to each other. But they are 2 independent task one instead of both being time
shared on a same CPU, | can push it across different CPU and they can execute. So, this is
how multi core are utilized today. There are very few really parallel applications. What is
parallel? Suppose | want to add 100 numbers tell the program right. You will always say for i
equal to 1 to 100 s is equal to s plus a, correct? That is a inherently sequential program. So,
if | ask say if | have 4 processors take 25 and number each add them then finally, | add the
answer that is the parallel way of looking it right. We have seen that in SIMD. This SIMD
type of thinking is going to be very less or the number of code number of programs today
that is running on your mobile phone which essentially exploit is the multi core facility there it

is very, very less, you are getting this?

Because for several reasons people do not know how to write parallel program, people
do not know and we do not have automatic parallelization environment though we are
taking for years together. So, compilers may not have matured to that level right. So,
there are lot of issues by which | cannot write parallel programs. So, the ftrivial thing is
that just go and. So, what happens today if | have a quad. Core now 2 of the cores are
like can never awake them up, they are sleeping eternally right. And some 2 cores will
be used in which one core would be some 60 percent another will be 20 thirty percent

right. The remaining core will be sleeping. So, because we do not know how to use it.

Now the best way of trying to use your mobile phone is develop a mobile app which will
have some chess game with lot of artificial intelligence, which will start using these 4 cores
do some a star search or some Al based searching and try to utilize. So, you have to write

parallel programs to do it, | do not know whether android actually has an multi

programming or parallel programming environment at all, are you able to appreciate?

Now, the way So, the main issue here is that, if | have a multi core system | would
like to if | want to exploit the speed of this multi core system, then | have to write
parallel programs. | have to take one program split it into concurrent parts which are
concurrently executable. Execute on these cores and get back the results aggregate
the results and hence see the speed up. So, | should develop the acumen of writing
parallel programs. So, towards the end of the course | will spend 2 or 3 classes
basically to teach you how to write some parallel programs, very interesting parallel
programs, simple parallel programs. | will also introduce a new model of
computation you have already seen a model of computation in your data structure
course right. The algebraic model of computation based on which you get your order
notations. Now | will give you some you know parallel models of computation, | will

also teach you that that makes this course very complete ok.

Now, in a right parallel programs the way one program will talk to another program is
through passing messages. And the way they pass message there are many ways of
passing messages we will look at those message passing system down, but one way by
which you are current arm processors that you have on your chip and all process message
is by between the cores is using the memory so that is why we call it as a shared memory
architecture. | share lot of memory across these ¢ 1 to c k, | share memory. And if | want one
fellow if ¢ 1 core 1 wants to send some result to core 2 how do they do they write into the
memory, this fellow writes into the memory that fellow reads from this memory and vice
verse, correct? So, we have to understand the memory management system in total before
we start appreciating multi core systems. Because everything there centres around memory.
We have learnt how to construct individual cores, we know how to construct them when |
want to integrate these cores and give one model saying there are k cores use them and
this is how you can use them and this is how you can analyse a program on them this is
how you can program then before we even go into that aspect, it is very fundamental for us

to understand how the memory is organised.

Right. So, in the next 3 to 4 classes it is also aligned to your assembly language

assignment we will talk more about memory management, fair enough? And then | will

talk about how memory management is done on individual cores and then extend it to
how that could be how that is extendable for multi core. We will we will do those 2 things
before we go into programming these multi core processors ok. So, what are 2 types of
memory? There are 2 types of memories one is a non volatile memory and another is a
volatile memory. What do you mean by non volatile? When the power is switched off the
memory contents do not get erased. A volatile memories when the power is switched off
when current is not passed when electricity is not available when the power is not
available, then what happens? Your memory gets erased. So, this is the difference

between a non volatile memory and a volatile memory.

Now, let us say the non volatile memory that we see today are the disks plus
something called erasable programmable read only memory, EPROM. These are all
the non volatile memory. The volatile memory are your RAM your cache your
registers. So, now, you have something called what we call as the memory
hierarchy. What we understand by this term memory hierarchy, | have the disk from
that | could load data into RAM, from RAM | can load data into caches, from cache |
can load data to registers, or access directly. So, the volatility decreases. So, this is
totally non volatile, while the remaining things are volatile, but the speed actually or
speed actually, again decreases registers are faster than cache access. Caches are

faster than RAM access RAM is much faster than disk access got this.

So, when | am looking at a single processor or single core whatever say ¢ 1, |
have to understand the memory hierarchy from it is perspective right. From ¢ 1s
perspective what is the memory hierarchy? Once | understand the perspective
from c 1, c 1s perspective to the memory hierarchy then | can basically you know
start you know elaborating on that and take it to the other stages. So, from an

individual cores point of view, what is the memory hierarchy? We will

(Refer Slide Time: 10:11)

)
Ddkw P ® @pmre | 2-0-SL P
EREEEER

amid ol

Now start looking at it. Let us come from the bottom. So, there is a disk right. And
this fellow has a disk driver which is a software right. If you insert a u s b driver is
being installed windows will give you that command right. This is fine and disk
actually has a disk controller who understands how the disk works. This disk driver
will be talking to the disk controller. Where will this disk driver execute? This will
execute on your CPU, the disk controller will be a separate hardware and it will be, it
will be executing. While this software will be used to program or talk to the disk
controller, saying hey this is the data write it this is the data read it this is the data
erase it etcetera. And the disk controller will do internally it will go and see whatever

action which the you know, the OS wants it will get it done from it, ok.

So, this is running on the normal CPU, this is the software and that is the disk driver,
which actually programs the disk controller to do lot of activity on this physical disks,
correct? Now how do you read or write into a disk? From a disk | write it into a RAM.
From the disk | write data to the RAM or programs to the RAM, and as a CPU | access
only the RAM. | do not access the disk directly. Because the way instructions are
executed it assumes that | have segmentation you have already done right. So, | have

to load it into the memory and use that right. So, | the programming model that we have

conceived of only will look at RAM it will not look at disk.

So, you cannot execute a program directly from the disk, it actually takes copies that
program into the RAM and executes from the RAM. Because that is very much
necessary for all my intra security inter security, So many things that we have talked
off from a segmentation point of view. Now let us look at what is happening at the
RAM level. When | am writing a program | say | have a 32 bit architecture right; that
means, | tell the programmer | tell the compiler you can address anywhere in this 32
bit. | am giving you a 4 GB address space, you can go and use this 4 GB address

space. So, every program is given a 4 GB address space.

And it can go and use it, but ultimately this 4 GB is given this is called a logical
address base, because physically it may not be present. Physically on your RAM |
may have only 2 GB, but | am | as a programmer can access anywhere in this 4 GB.
| will be given 4 GB logical address space, but actual RAM will be only 2 GB right.
So, as for as the architecture goes with respect to the programmer, | go and say |
am giving you 4 GB, irrespective of whatever | have so that 4 | may have 2 GB | can
have 128 KB, | could have 1 MB whatever here physical memory, but | tell the user |
tell the programmer hey | am giving you 4 GB. So, essentially; that means, | am
telling the programmer here is a virtual memory, you assume that you have 4 GB

that 4 GB is not physically present it is virtually present to you right.

So, | tell the programmer you write the program do not bother about anything
about my physical RAM or anything. Just use assume you have that entire 32 bit
address space of 4 GB write your program. | as an operating system with the
support of the hardware will see that your 4 GB program will be executed with
the small half a GB that | have. It is my responsibility to execute your 4 GB

program on say a half GB that | have, are you able to follow?

So, essentially the architecture and the operating system together are presenting to
the you know the user a 4 GB virtual address space. That is not physically present,
why we call it as virtual? Because it is not physically present. It is not available in
hardware. It is not available on the ram, but the OS and the architecture tells a user
assume you do | will take care, are you appreciating this fact? That is why it is called

a virtual memory because it is not physically available, all of you followed? Right.

Now, in which strength is it saying, suppose | go and say oh tomorrow morning | will
go | will I will jump from a helicopter | will do sky diving right. There is no rationale
behind that statement. | can not even climb 3 floors of ICSR. It is my head starts
rounding, | go and say | will jump from helicopter tomorrow morning | will land
directly in the fourth floor meaningless. So, there should be some rationale behind
the operating system and the computer architecture trying to make such an
assertive statement right. What is that rationale? Are you getting this? Right. So,
what is the rationale? What could be that rationale? Rationale for making that

statement, you were saying what will be the consequence of the statement.

Student: Entire program (Refer Time: 16:30) entire program is not executing at

the same time.

That is the rationale.

So, can you make it? Entire 4 GB need not be every time 4 GB need not be

there. So, can you can you make the rationale bit more affective?

Student: Only next instruction and data hold the next instruction.

Exactly that is the thing.

If 1 ensure that at any point of time, the next instruction to be executed and the data
necessary for that next instruction to go to completion are available in the RAM. Then
eventually my program will lead to completion. | do not need all the 4 GB at any point of
time. At every point of time | need the next instruction to be executed in the RAM so that |
fetch it | also need that data that is needed by the next instruction to go to completion, that
also should be in the RAM, then only | can fetch the data. If this | ensure for every, every
clock cycle of my entire program life then | can essentially go. And that next instruction can
be assuming even it can be 1 KB next instruction, may not be not be thousand bytes, but
even assuming it is 1 KB | can execute this entire program using including data | can finish
off in 1 KB in assumptions, correct? Are you able to follow? So, so this is the rationale

behind the virtual memory concept itself saying, | do not really

care how much you know underlying memory | have.

| should have something called RAM | cannot have 0 ram, but | will have something called
ram, but if | have that something called RAM | can go and execute program of any size. So,
as a 32 bit architecture you can only write programs that is as large as 4 GB, write that
program with data everything come to me | will | will execute and irrespective of what | have
in physical RAM. The rationale again is that always during the life time of a process at any
point of time the next instruction to be executed and the data needed by the next instruction
to take it to completion should be available. If this is ensured across the life of the program
then essentially the program will go to completion. So, this is the rationale behind what we

call as virtual memory, got it? Got it any doubts?

Student: (Refer Time: 18:58) instructions are executed in the pipeline right. So, like

there might be situation like multiple instruction may need the data at the same time.

But that is all taken care by your dynamic scheduling. Load store, now you are
talking of a load store architecture, somebody will 2 loads will come at a same
point of time let them come. But your that that will be taken care by your dynamic
scheduling, | will come to you what, | understand what you are talking of right. |
will, | will come to you, there are multi port reads and so many things, we will, we

will certainly look at these in great detail right.

First we will talk about virtual memory, what you are talking is about we will
resolve it at a cache level, and there are some where going to be some
structural hazard and so many things are going to come then we will have spit
cache multi level cache. First we will finish this virtual memory right. Are you able

to appreciate this [FL] now what happens is as follows.

(Refer Slide Time: 20:06).

93w P4 L0 Crmre 29 S 048
EEERENER

So, how will | say. So, there is something called a logical address space and there is
something called a physical address space. The logical address space is maintained in
the disk, your OS course will teach you how it is maintained in a disk. Logical address
space runs between 0 to in the 32 bit architecture it goes from 0 to 2 power 32 minus 1,

all your segmentation everything is done on this logical address space.

So, if | want memory | have to give consecutive memory for a segment, all these
things are done segment descriptor everything is done in the logical address
space where entire segmentation is in the logical address space. Then what you
do? Then there is some physical address space which is say one fourth of it is

size for example, let me say | have one GB memory.

Now what happens is, what is my rationale? At every point of time the next instruction to
be executed and the data needed by the next instruction should be loaded into memory,
I will not load instruction by instruction. Why should | not load instruction by instruction?
I will not load instruction by instruction because when | want to access memory what,
how does the CPU access memory? Memory and all the peripherals are in a common

bus. So, | have to go and request for the bus that bus fellow will bless me with the

request then | become the owner of the bus. And then | go on read memory and get it

back after that | relinquish that ownership and then somebody else will becomes

the owner.

So, if | want to read from memory it is not a joke. It is a long drawn process right.
You got it is a very long drawn process. So, | have to request the bus arbiter | have
to get the control over the bus, then | have to send request to the memory then it will
it will take it is own free time because it is much slower than the processor, then it
basically sends the data back. | have to collect it at the CPU, then | have to do all
these cache coherency all these you know policies, | have to collect it then | have to
see all these policies | have to see whether there is a you know any segmentation

violation all these things | need to check and then finally, it comes up right.

So, so every time | want to access data there is a latency involved right. So, if a
CPU wants to access data there is a latency of tau involved, plus there is an access
time. Access times is time to read one unit of data. So, this tau is contributed by the
bus | asked the bus [FL] give me some control then the bus blesses me. That the
time required to take the blessing of the bus will be this tau. After the tau only | will
start accessing data. So, the total time will be tau plus access time of memory read
or write access means read or write. So, if | want read to from | need some time that
is given by this or write into memory let us take this. So, suppose | am doing n bits
at a time one by one, this will be n into tau plus access time, but in one read itself |

read n bits then it will be tau times n into access time hide, hide the latency.

Hide the latency because one time | am asking for the memory one time | am getting the
request | immediately transfer n, n unit is of data right. Rather than one by one I. So,
because of this reason this latency is quite significant it is not you know it is not something
which is neglectable it is quite significant. So, if | multiply the tau with n then it goes back to
my monkey example right. It becomes a drunkard monkey bit by a scorpion. So, whole thing
becomes extremely complex. So, | would like to hide this latency and that is why when |
want to transfer data from the a slower device to a faster devise whether it be from disk to
RAM or RAM to cache | do not transfer one byte | transfer junk of bytes. So, these devises
like a RAM your disk your cache they are all called block devices. What do you understand

by the term block? Instead of reading one

byte at a time | read one block at a time.

So, by basic granularity of trying to access these disks hard disk are basically a block.
Where disk is also your hard disk is also a block device. So, when | read from the hard
disk | do not read one byte, but essentially | read a set of bytes, which can be as long as
or as large as 4 KB or 8 KB right. So, since you have now talking of block devices | will
only move data in blocks, motivated by this | go and have this physical address space
split into several blocks namely 0 1 2 3 etcetera. And each block from the virtual
memory point of view, that is | am talking of the logical address space and physical
address space, each block is called a page. Now in the physical address space this is
the RAM what happens we split this RAM into equal parts each part is equal to the page
size whatever page. So, similarly the logical address space will also be split into pages,
each one is a page. So, your program and everything will be in the logical address
space as and when required it will be moved from the logical address space to the

physical address space for execution purpose is it right.

And the moment will not be as one byte after one byte it will be moved in terms of
pages. So, | will make | will move if at all | moving something from a logical address
space to the physical address space, the minimum granularity will be one page at
least one page | have to move and vice verse. | cannot just move 1 byte or 2 byte
etcetera. So, | will between the logical address space and the physical address
space the moment will be in terms of one block of data which | call it as page. So, in

the RAM the logical address space was split like this into equal parts.

The same equal part | can split the RAM also so that, a page from the logical address
space can go and occupy this physical address space. So, the size of the page here in
a logical address space is equal to the size of the page in the physical address space.
So, these things like a photo sit is inside a photo frame right. If | have a photo frame.
Why do you call it as a photo frame? Because photo will eventually | can keep a photo
inside you can not go and sit inside that only a photo can sit. Similarly, a page sit is
inside a page frame correct. So, all these things on the RAM are called page frames
onto which some page from the logical address space currently stored in this can come

and occupy. Do you get this? Are you able to appreciate this fact?

So, | have pages on my logical address space, | have page frame on my physical
address space and anything that | move from the disk to the RAM it will be in the
terms of blocks. In this case this block is called a page and | will be moving if at all a
logical address space wants to talk to the physical address space, it is only thing
that you can directly talk to. Then basically it is going to send pages of data. And

those pages can come and sit in this page frames, are you able to follow?

(Refer Slide Time: 29:31)

am i@ ol

Now So, how many? So, let us go to the next part, 0 to 2 power 32 minus 1 is the
address space of the logical address space. In addition | will have something called
a translator, which will basically translate, which will and then | will have something
called cannot be as big as this is the physical address space. Now what will happen
is, let me say this is page number one 0 1 2 3 like that it goes. Now what | do is that

for every page | need to know, | need to translate for every page here. So how?

So, let us assume that each page is of size 2 power 12 bytes which is 4096. Each page
is of size 3 power 12 bytes. And for every page | should know whether that page is still
in the logical address space or it is moved into the physical address space. If it has
moved into the physical address space | should know, which physical address space or

which page frames. So, this will also have page frames. So, for every page in the logical

address space | need to know if at all it is loaded into the physical address space. If in

case it is loaded | should know which exactly is the page frame for which it is
loaded are you able to follow? Yes or no. So, let us say. So, so how many entries

should | have how many entries should | have.

Student: 2 power 20.

Um 2 power 20 why So much time for this? So, | have 2 power 12 each is 2 power
12 total is 2 power 32. So, | need to have 2 power 20 entries right. And each what is
2 power 20 is one mega bit right. One mega entries and what should this tell you? It
should tell me which page frame it is loaded. So, so how many bytes | need for
specifying the page frames? So, this is a 32 bit know | should tell which page frames
is it is loaded. So, | may for every page | should know where which page frame and
that page frame | may tell it as a beginning address of something address of these
page frames. So, it will start right so that address would be again | need 32 bits,
because | need to start this starting address of these page frames. Suppose | am
storing like this. So, what is the total storage involved 4 bytes right. 4 bytes is 2
power 2. So, | need 2 power 22 bytes for this translation. That will be something like
4 MB 2 power 20 is 1 MB 4 MB. So, the size of this translated table itself will be 4
MB, correct? The size of the translated table itself will be 4 MB in which | will | by
using that 4 MB what | can say? Whether a particular page is in the memory or not

and if it is in the memory where in that memory this | can address by this right.

Now somebody should tell me where this table is? This table will be loaded into memory
itself. Somebody should tell me where this table is which address it is available then only |
can go and update these values correct. So, so | have some register let me call it as page
register. This page register will tell me where this translating table starts. Now suppose | am
generating a logical address which is 32 bit in size, | will use the first 20 bits to go into this
table because this is this is 2 power 20 right. It will be 20 bits. So, | will use the first 20 bits to
go to index into this table this. So, what | will do | will | will take the first 20 bits add it with
page register and then go into this entry here, correct? In this entry what | will have is
whether this page is loaded or | will have information whether this page is loaded or not. If
this page is loaded then it will give me the start address of that page. To that start address |

can add these 12 bits the least significant bits and that will

give me my actual address.

So, | say want to access a data. So, | am generating a 32 bit address that will be spawning
across this logical address space, so that will be in some page number which is given by the
first 20 bits because each page is 2 power 12, 12 bits 12 bit addressable like 2 power
twelve. So, the first 20 bits will identify what that page is correct. So, | use the 20 bits as an
index to this page register page register plus that 20 bit will give me the index. Where | can
go and look at whether the page is already loaded into your physical address space, if it is
loaded then | have to if it is loaded then | take the remaining 12 bits here add it to the you
know this base address and | can get the actual address. If it is not loaded then | have to go
and load it from the logical address space into the physical address space. If it is not loaded
then the processor will create something called a page fault. When the processor creates a
page fault because it is not available here, then | go and bring that page and load it into this

memory and adjust that entry so that it points to it ok.

So, what we have seen today is a very simple set up where in | am having a
logical address space which is 4 giga byte in size. | am asked | am having a
translator and then | have a physical address space which is some very less
value whenever. So, in the logical address space whenever a program generate
a memory request right. That memory request essentially is send to the logical
address space, it is generated from the logical address space. So, | get the 32

bit | take those 20 bits to index into table this is a translated table.

The starting entry of the translated table is stored in from page register | just add
that many thing and index into this table. And this table will tell me whether the page
| am looking for is available or not and if it is available, where it is available. If it is
not available then the architecture will raise a page fault which will go and fetch that
relevant portion from a physical memory from the logical address space in to this
physical address space, you got a feeling? Now the biggest thorn in the flesh for this

is, that | am wasting 4 mega bytes of data just for you know getting page.

Can | do something better? That is also there every time | am | am enabling paging in this

scheme if this is the scheme that is final then what is the | need 4 MB of space just to

store page translation thing which is not acceptable. We can do something much
better than this. So, this is the notion of virtual memory we will continue this in you
know Mondays class, again on how these you know different aspects are taken care
of. But this in essence this is the import of virtual memory right. And their translation,
where in | go and say give me as much code you want | will execute it with as less

memory | can have, right. We will further deliberate on these topics.

