
Computer Organization and Architecture
Prof. V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture – 25
Structural Hazard, Architectural Enhancements

(Refer Slide Time: 00:24)

So, we have seen different types of branch predictors, the tournament predictor

the global predictor or what we now call it as a correlation predictor. It is also

called a correlation predictor because we are trying to correlate the behaviour of

one branch with some other branch and of course, you also saw the k bit

predictor, which of was 1 bit, 2 bit, 3 bit and then we also mentioned that a k bit

predictor k greater than 2 is as good as a two bit predictor. And so many of these

predictors still they Byblos Hennessey and Patterson computer architecture

book, and you will see this plus many more predictors you can search you will

get close to half a million hit when you say branch predictors in google ok.

So, with this I will sign off on this and this is what I believe that you should know in some

amount of detail of course, when you go to a advance course on computer architecture,

you will learn how a tournament predictor can be implemented right. As we

see a tournament predictor is one which will move from depending on the behaviour

of a branch and move from one to next to next to next and so I the branch predictor

actually starts becoming intelligent right. So, that is a machine intelligence that is

built there which will intelligently predict branches. So, there are very fundamental

questions can and a tool which will enhance the intelligence of a branch predictor

have branches inside it and so on. So, very interesting questions that we can try and

handle. So, with this there is a scope for lot of intelligence to be built, lot more scope

for writing papers. So, that is there we stop here now we move to the next type of

hazards. So, we have seen data hazards we have seen control hazards, we have

some remedies for each one of them correct and importantly do remember this zero

cycle instruction. So, this is very very important now let us go to the last type of

hazard in a pipeline, which we call as a structural hazard.

(Refer Slide Time: 02:29)

See the structural hazard is something like see we have some multiple functional unit, each

of these units will not do everything right. There is no point in keeping say for example, there

is no point in having a load store functionality inside an adder unit right. So, I cannot have

one unit in which has both load store and adder or load store add and floating point right

because if I have such type of a unit then I will be wasting lot of space and we can all we

cannot also selectingly go and disable parts of that unit in some

sense right there will be lot of dependencies.

So, what will happen is, I will not doing any floating point operations [FL] I will be

wasting power I will be hanging around. So, I will put lot of area and also I will be

wasting power there. Because if I have all the three in one execution unit and you

have multiple such execution unit, we will say these are all symmetric execution

units right then what will happen is that either I will be doing some floating point

operation or I will be doing load store or I will be doing integer arithmetic not all the

three in same unit. So, if when we look at multiple execution unit which forms the

basis of course, the scalar architecture there will be some execution units will do

integer arithmetic, some execution integer and logic arithmetic bit wise and bit wise

and or sort of things, some will be dedicated to do floating point, some will be

dedicated to do load and some will be dedicated to do store. Now if I get suppose I

am getting those 6 instructions as we saw interrupt the previous example right.

(Refer Slide Time: 04:05)

We have seen this 6 instructions that we saw here. The 6 instructions are such

that all are store or all are load for example, the worst case and I have only two

load units the remaining 4 instructions have to wait.

This waiting is not because of a control issue, it is not because of any data issue it is

because of the non availability of the functional unit. It is because the structure of the

architecture does not have enough units to do this computation, and that is why we call

this as the structural hazard. So, what it means to build this architecture there are lot of

questions here to answer; how many such integer instructions I will get at any point of

time? If I am going to get always say 5 to 6 integer instructions which can execute in

parallel, then to actually get the biggest speed up I need to I will put 6 integer execution

units right. If I am only going to get 3 or 4 then the remaining two I will not put if I by that

I will reduce my power consumption etc. So, today when somebody wants to buy your

architecture, first thing they will say how fast is your architecture second thing they will

also come and see how much power it is going to spend, it is going to consume, how

much area it is going to consume, how much heat it is going to generate all these things

also now start coming up when people try to build your buy your architecture specifically

in a high performance computing type of environment.

We are looking all these super scalar more from an performance point of view. So,

what should be see in this case as we see here we have actually assumed that all

these units are symmetric, all these units can execute every instruction, but that will

be ideally the case right and that is where we land up with what we call as the

structural hazard. I will just read out the red statements here, non availability of a

functional unit will cost the structural hazard say I would like to schedule the seventh

instruction in our example now I have only 6 units that is also one of the symptoms.

The new instruction has to wait and then ideally we will have separate integer

floating point unit and load store units and so, in a in a load store architecture of

course, you know what a load store architecture is. Now when there are lot of load

store instructions then it will not there can be a potential functional hazard.

Now the next type right what it means to do compiler fine tuning for an architecture

right? Fine tune the program for your architecture it will see that for this architecture

there are only 4 integer units right. So, it will if there are two floating point instructions far

off right. So, I have say let us say I have 4 integer instructions then suppose I have lot of

integer instructions and some two floating point instructions here. So, I say I 1, I 2, I 3, I

4, I 5, I 6, I 7, I 8, I 9 and these two are floating point instructions there I 8 and I 9

are dependent on each other of course, these are all I 1 to I 4 are independent, I

5 to I 7 are independent let us say or I 1 to I.

So, suppose there are 4 integer units and one floating point unit in your architecture,

what I can do is I can push this I 8 here and send this together because then this 4

will be fetched along with I 8 and. So, right rather this I 5 going and it has no units

and it will start waiting. When it starts waiting everything else has to wait in the

program header because the does not the computer the system does not know that

you know because all these things all the instructions are waiting, now all the

subsequent instruction has to wait. You cannot now go and schedule I 5, I 6, I 7 etc

because there is no functional unit there is no reservation station right. So, if at all

somebody has to wait has to wait on the reservation station.

So, I 8 has no I 5 there is no reservation station because there are 4 integer units

and I 5 is also an integer instructions, but there is a floating point in it. So, what the

compiler can do is it can push this I 8 along with this. So, that when the hardware

fetches it will fetch this 4 integer instruction and one floating point instruction and

that can start executing on this in the next step it can bring three integer instruction

along with this floating point instruction correct otherwise what will happen I 1 to I 4

one has to finish then I 5, then I 6 then I 7 then I 8 alone will go then I 9 will go

because there only floating point in them are you able to understand this.

So, by doing this type of you know execution by doing this type of what we call as a

code motion, where I move the code from one like move an instruction from part to the

another by doing this rearrangement the compiler can ensure that the finally, this is the

dynamically scheduled process, but it can effectively use this understanding. So, even

for a dynamic dynamically scheduled super scalar processes, there are some (Refer

Time: 09:27) the compiler can do in order to improve the performance ok.

So, this is what we understand by structural hazard, we will talk about one more structural

hazard as we move down with memory management right at that point of time, but as far as

execution goes this is what we mean by structural hazard, and this is what the compiler can

do to handle structural hazards. Now with this this is all about super

scalar pipelining stuff and all that we have discussed I now over. Now what we will do is

now we will start talking about more on deep more deeper into the architecture we will I

will cover this Amdahl’s law which is very very important and then we will start talking

about multi core architectures that is what we will do till we touch. Quiz two post quiz

two will look at cache memory and organisation cache and I o. So, any doubts in

pipelining super scalar shall I proceed yes [FL] can we go, can we go ahead.

Now comes to this Amdahl’s law, see Amdahl’s law is something that an architecture it is

a tool for the computer architect say I want to do some enhancement, I am not satisfied

with the performance, I want to do some enhancement to improve my performance

right. Now I need some guidance for doing this enhancement and that is what precisely

Amdahl’s law basically talk about see. So, Amdahl’s law basically quantify something

called speed up, we are only talking about performance here no area no power. We are

talking about performance here. Amdahl’s law talks about what is speed up speed up is

defined as the execution time without enhancement divided by the execution time with

enhancement the time should decrease.

(Refer Slide Time: 11:31)

So, the speed up should always be greater than one correct. So, the speed up this

parameter is defined as execution time without enhancement, divided by execution time

with enhancement. The execution time without enhancement whatever

enhancement that we are talking of will be less than the will be greater than the

execution time with enhancement hopefully greater than the execution time with

enhancement, and hence we will get a better speed up.

So, Amdahl’s law helps you quantify the speed up right. I go and say I want to do

this enhancement then you will ask what would be the speed up right that is a even

(Refer Time: 12:04) you will ask, oh go and do this what will be the speed up how

fast will the computer run in contrast or in comparison to what it is currently what

would be the enhancement in speed and that is what we are talking of. So, this is

the. So, we will be trying to get some very good expression for speed up. Now what

will happen in an enhancement, when I enhance speed up how do you compute this

speed up? We run benchmark programs and we compute the speed up. We ran

benchmark programs on a model without enhancement we get some total number

of cycles, we now run the same thing with enhancement we will get a new total

number of cycles, we divide one by another and that is what we call as speed up.

Now when I want to do this enhancement it will not be at the entire program gets every

instruction of that program starts working faster. For example, my enhancement would

be on the floating point so; that means, the floating point instructions alone will start

working faster right. So, when I do an enhancement in the architecture, it is not that

every part of the program gets enhanced a fraction of a program will get enhanced. For

example, in my executable if I have say 10 floating point instructions out 100 say 10

percent, and I improve the floating point performance; that means, those 10 percent or

0.1 fraction will improve right are you able to are you able to comprehend this right. So,

see every book just gives this law and proves it, but you should see what is the

justification of having such a law. See there will there will be several ways by which I

can estimate speed up why should I estimate it in this fashion why should I have these

type of a that all these wise are not answered. So, please note it down very carefully.

A actually stands this a actually stands for the fraction of computation time in the original

architecture that can be converted to take advantage of this enhancement. Fraction of

computation time, there are 10 percent of the time why this definition it is not

just not the fraction of the instructions; fraction of the instruction will not make any sense

right I would have only three instructions, but the three instructions will run one million

times. So, in a. So, there is that 10, 20,10, 8, 10, 90 rule right 90 percent of the code will

execute only for 10 percent of the time, 10 percent of the code will execute for ninety

percent of the time. So, if suppose I have 3 floating point instructions and 10 integer

easy 9 integer instructions. So, totally 12 instructions. So, what is 2 out of 12 25 percent

if I go and improve the floating point performance I say that 25 percent there will be

improvement is a wrong statement. Suppose these three floating point instruction this

this 12 instruction execute for say 100 units of time and this floating point instruction

itself consumes 90 percent of the time right. If I improve the floating point performance

the performance of your code will increase much more than the 25 percent ok.

Suppose these three floating point is to instruction only consume you know 3

units of time out of 100 and I go and improve the floating point and nothing will

happen because the majority of the time you spend on still your untouched

instructions. So, when I am trying to model this a, I should it is it is more

appropriate for me to model a as a fraction of computation time rather than a

fraction of the number of instructions are you able to get this any doubts are you

able to follow? Why should a be fraction of computation time and not fraction of

instructions as I just told a bit earlier are you able to get the feel yes or no.

So, what is the new execution time? Execution time of the new code is nothing, but

one minus k times the execution time of old because a percent of that code is only

enhanced. So, what, so the remaining 1 minus a portion will remain the same. So, 1

minus k times execution time old right plus the execution time of the enhancement

right because a percent of the time is now enhanced and that is accounted for and

that is accounted for a percent of the code is enhanced a percent of that execution

time is enhanced and that is accounted for here while the remaining one minus a is

still the old code. So, that is one minus a times execution.

So, if say 0.4. So, totally I am taking say some 10 seconds right and 0.4 percent of your

0.4 percent of your program is now enhanced, remaining 0.6 into 10 seconds the

remaining 0.4 means that 4 seconds of my running time is now improved, the remaining

6 seconds will remain 6 seconds and that is what this 0.6 into 10, that 4 seconds 0.4 of

this 10 second is improved to say 2 seconds. So, the total time now becomes 8 seconds

it is are you able to follow. So, the new execution time if I say 0.4 the original old

execution time was 10 seconds this is 10, 0.4 percent 0.4 is the fraction of computation

time which is taking the advantage; that means, 4 seconds there will be some

instructions executing for 4 seconds, that those instructions are now enhanced the

remaining 6 seconds will remain 6 because the remaining 0.6 has to remain.

So, that 0.6 into 10 this 6 seconds is accounted for here, now the remaining 4

seconds for which I have done the enhancement that 4 seconds has now

become 2 seconds. So, the new execution time will be 8 seconds. So, the speed

up now will be 10 by 8, what is 10 by 8 1.25 correct is it.

Student: Sir does this not depend on the program execution time without enhancement

upon with enhancement, different programs is instruction can be different right.

Yeah yeah that is always.

Student: So.

So, we are only talking about some benchmark programs. So, see we cannot

actually measure for all the programs on here. So, that is why that benchmarks

have come. So, we will run all these benchmark for example, and for that we will

get the speed up. So, speed up it will be respect to some benchmark set up

benchmark. On a whole these benchmark performance is improved. So, I can go

and sell it in the high performance computing server market when I want to go

and compute in the server market people will only look at this type of execution

time. So, I can go and sell it in the server market if my thing (Refer Time: 19:16).

So, we will do this for one class of benchmarks spec benchmarks I have already asked you

to go and look at benchmarks right. So, this is any doubt. So, let us keep this mind

execution time new is 2 minus 8 times execution old plus execution time of the enhanced

portion, and overall speed up is execution time without enhancement divided by

execution time enhancement and A is the fraction of computation time in the original

architecture that can be converted to take advantage of that enhancement ok.

(Refer Slide Time: 19:50)

Now, what is speed up enhanced, speed up of the enhanced portion of your

speed up of the enhanced portion of your code. The speed up of the enhanced

portion of your code is nothing, but the execution time of the enhanced portion

old divided by execution time of enhanced portion new correct the speed up of

the enhanced portion alone is nothing, but execution time of the enhanced

portion old divided by execution time of the enhanced portion.

The execution time of enhanced portion old is nothing, but A into execution time old

because A percent of the time is what I am getting the enhancement for. So, execution

time of enhanced portion old is nothing, but A into execution time of old. So, the

execution time of enhanced portion new is nothing, but A into execution time old divided

by speed up enhanced. Substituting back in one what I am going to substitute this

execution time of enhanced portion. So, the execution time of enhanced portion is A into

execution time old by divided by speed up. So, this is. So, the execution time new will

be 1 minus A execution time old plus A times execution time old by speed up enhanced.

(Refer Slide Time: 21:09)

So, execution time new is equal to 1 minus A times execution time old, 1 minus A

times execution time old plus A times execution time old by speed up enhanced.

So, what is overall speed up? Execution time new divided by execution time old is

nothing, but sorry execution time old divided by execution time new is nothing 1 by 1

minus A plus A by speed up enhanced. Just take this please take this derivation this

is a very very simple derivation of Amdahl’s law, please copy this and then we will go

and find out why this take why am I interested in this one have you all copied.

Now can you tell me palgart and I madras can you tell me why do I need a

formula like this why I want to calculate over all speed up, but that over all speed

up has something called a and something called speed up enhanced and

nothing more I could have had other things right I could have had execution time

execution time of enhanced portion, there are so many variables that we have

seen why am I interested just in a c speed up enhanced. Why I am why should I

get a formula like this and not something else. I could have got different verities

of formulas right why am I interested in this form speed up overall is equal to 1

by 1 minus A plus A divided by speed up enhanced (Refer Time: 22:35) .

Student: We change something all the overall performance changes.

No that is what we are trying to calculate and in the process of calculation I am just

landing up with this form, this is the formula that I want to I am using now for this

right this is the formula I am using why in this for what why not in something else I

could have derived other ways of this speed up overall we have n different forms.

Student: It will compare which portion of the.

Why this form.

Student: If the data is already available for (Refer Time: 23:20).

Availability of data excellent see a is available to me right, because I can run the

benchmark when I run the benchmark there is something called the execution trace

right when I run the benchmark I will know every instruction how many times it is

executed and when I do my enhancement I know which are all the instructions I am

touching from that I can go and find out and I can I know for every instruction how

many cycles it will take I know how much total cycle the program took from that I

can actually compute a accurately correct. Then next thing, I go and improve some

performance speed of some part I can really find our what is the speed up there for

that part alone. So, my speed up enhanced and a can be accurately computed that

is why I would love to express my speed up overall on in terms of A and speed up

enhanced because these are the things that I could compute with lot more accuracy.

I have a model I know I can run the entire spec benchmark on instruction set stimulator

and actually I can go and find out every instruction how many times it is executed, and I

know what is the total length of this program total number of cycles consumed not the

length, this is a number of cycles consumed by this program and when I go and touch

the enhancement I know which are all instructions that are going to get affected from

that I can basically get this a is the fraction of the computation time, that is affected by

this. So, I can get this a very (Refer Time: 24:52). Similarly I could also get the speed up

enhanced because I work on that model. So, I know the previous model now I have go

and improve improved on that model, now for me to get speed up enhanced are now

very easy. So, by this I can basically find out whether there will be speed up or not.

(Refer Slide Time: 25:13)

So, let us take some examples before we end up today’s class. So, let us take a program

which always takes 50 percent FP operations in which 20 percent are FP square root and 30

percent are others. So, I am taking a benchmark scenario where always any program I will

have 50 percent f floating point operations. Let us assume is a highly scientific computer

and in that 50 percent of FP operations 20 percent of it will be square root, and 30 percent

will be some some other instructions. Now this is the scenario this is the program that is

given to you the assembly program that is given to you and you have to now start executing

an architecture arrive at an architecture which will handle these classes of assembly

program very nicely. So, you are given two choices, use a hardware and improve floating

point square root to get speed up of 10 right this floating point square root currently is

implemented in the instruction set. Now can I have can I go and improve the floating point

square root to get a speed up of 10 is the question.

Suppose there is a way I put it as choice one, choice two is use software and improve

all floating point operation by a speed up of 1.6 do not bother about all these floating

point hardware we will give software which will go and improve all the floating point

operations by a speed up of 1.6. So, what is this speed up in choice. 1 by 1 minus 0.2

plus 0.2 by 10 right because 20 percent this floating point square root. So, in a over all

program the a is 0. right. So, so 1by 1 minus 0.2 plus 0.2 by 10. So, this is because I

need a speed up of enhanced of 10. So, this is. So, the speed up in choice one is 1.22,

interestingly my speed up in choice two is 1.23. So, if I really want to enhance then I will

prefer choice two not only that it is not a hardware it can be done in your lab you know it

is just software and compilation, but interestingly you will find that the software solution

gives you much better much much better almost equivalent, but slightly more better

speed up than the pure hardware connection. So, just to wind up.

So, we had given two choices one choice was that I will go and improve 20 percent

of this square root 20 percent of my run time I will improve, but then the speed up

would be 10 times. The other was that 50 percent of the time I will improve, but the

speed up for by a speed up of 1.6 for that portion alone. Now when we see that the

choice two becomes much more favourable than choice one, and choice two is also

important because I can go and do everything in software I need not touch the

hardware. So, this is much more simpler we will talk in lacks of rupees while here I

will while lacks of Indian rupees while here I am talking of millions of u s d. So, that

is the difference right. So, please understand.

So, Amdahl’s law if you just look at it to start it initially if I had ask this question

before teaching Amdahl’s law I say floating point square root takes lot of time I

will get a speed up of 10 it is taking 120 cycles and I will make it 12 cycles,

something like that if I say then you would have actually gone and fall in fall in

pray for this choice one, but then if I use choice two I save lot of money and I

also get better performance at least point not one more than this. If the program

runs for 10 hours right 0.01 essentially is a very significant time if the program

runs for 10 days some simulations run 10 you know 0.01 is you know some 2.5

hours. So, it will. So, it actually means quite a large amount of time in terms of.

(Refer Slide Time: 29:22)

We will now go in the next class we will now go in to the multi core. So, whatever I have

talked so for is about a single core. So, now, we need to enhance it for multiple cores

and the systems that you are going to use are multi core system. So, whatever you

have learnt here we will become extremely useless if you do not understand the multi

core architecture all the super scalar will be one core like that many things will be put

and what it means to arrive at that bigger architecture and that we need to understand

because we do not find uni core machines anymore everything is muli core your phone

has 8 cores or will have 8 cores currently it will have 4 core and it and it will have 8 core.

So, even when you want to understand how your mobile phone works somebody

can ask you this question how your phone works you should be in a position to

answer those questions. So, we will talk about. So, the next joke comes in what

we call as the cache coherency protocol. So, now, we will teach some

rudimentary simple, but working protocol then people have started working on it

some 100 protocols have come just handling cache. So, but we will see some

interesting things in that some real salient things that we will cover ok.

Thanks.

