
Computer Organization and Architecture

Prof. V. Kamakoti

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture – 03

Lab 1: Introduction

(Refer Slide Time: 00:16)

Actually, we will do slightly different. The second would be interrupt service routines.

Next would be virtual memory. And the last will be on what we call as task switching.

These 4 are very important concepts which you need to understand to finally, appreciate

why certain things are done by the operating system and the compilers right. So, if you

want have a good understanding of that then understanding these 4 concepts in detail is a

must. So, each will carry 20 marks, we will try to see again, like in the previous semester

course, I want you to understand that it first. So, just getting a working code we will not

give you marks, but will have a very strict viva voce.

So, we will we will ask you lot of conceptual questions there and we want you to answer

those questions. So, this 20 marks would be directly proportional to how well you handle

the viva voce. So, understand and do the code I do not even mind you know I will not

use the word copying I will be diplomatic discussing with yourself and doing the code.

So, I do not really mind that. When it comes to viva voce it is going to be one on one and

I want you to answer those questions very clearly, that we will check your thoroughness

there. So, this is not more of skill, but it is more of an understanding that we want to

develop through this lab.

So, when we teach you these things like we will cover some background material for

each one of these 4, and that will happen in the first 45 minutes of each lab course. So,

everywhere there will be I will talk influence of compilers on segmentation and am

influence of operating system on segmentation right, similarly influence of compilers on

ISRs and OS on ISRs - ISR essentially stands for interrupt service routine. The way you

can show yourself as psi funda the easiest way of showing yourself as psi funda is to

have lot of these abbreviations memorized. So, ISRs, you can talk an entire talk you can

give just with an abbreviations also virtual memory and then task switching.

So, what I will do today is I will now talk for another half an hour and I will tell you

what each assignment what it means to complete this assignment what all the objectives

of this assignment why this 4 things, that I have put here. When a program wants to get

executed the program essentially will have 3 blocks. So, your a dot out if you go and see

how it is getting executed, it needs 3 different parts of memory right. So, let us just start

when we when we want to execute a program. So, each instruction will undergo 5

different each execution of an instruction will be in 5 phases correct, what are those

phases I will fetch the instruction and increment the program counter next.

Student: Decode.

Decode the instruction, fetch the data, execute the instruction and store back the results.

So, at least 3 of this right fetching the instruction, fetching the data, storing back the

result at least 3 stages I may be touching the memory right. So, a program essentially has

3 components, one is the instruction that we are trying to execute. The second is the data

that I am going to use. And the third is; obviously, the stack why do we need the stack

again we will explain in more detail we have we have done a quiet a bit of stack work of

in our third semester course right, lot of stack you have seen both in your data structure

plus in the foundation to computer system design. We will see more of the stack here.

So, there are 3 different segments that are necessary when you want to execute the

program right. And 2 important things come up. One is that when I look at a mail server

for example, there are 2 processes that are executing together right.

So, one process will execute half way in it is execution it may be pulled out another

process will go and start executing. Then only it can give a feeling that it is serving all of

you right if 4 of you log into a Gmail server, Google server right then you start typing the

email till you finish your email the other fellow has to wait right then you get really

frustrated there will be one million users. So, the entire CPU is scheduled. So, that you

get some time then you are pulled out then he gets some times. So, everybody has a

feeling that the server is giving some service to it right.

So, when more than one process one what is the process program in execution right. So, I

have hello world dot c that is a c program I compile it I get a dot out that is an executable

program. So, I press dot slash a dot out and press enter then that executable program

starts executing then it becomes a process. So, a process is nothing, but a program in

execution. So, now, there will be several programs in execution right. So, each program

each process will have it is own code, it is own data and it is own stack right. So, when I

look at the memory there will be p 1s instruction, p 1s, data p 1s stack then there will be

p 2 instruction p 2 data p 2 stack.

Now, I will have p 3 instruction, p 3 data p 3 stack when p 3 came and did not have

contiguous memory location. So, right it need not be contiguous.

So, there are 3 segments that is why we call it as a segmentation. There are 3 different

segments that are associated with each program right each process. Now I need to protect

these segments correct. For example, p 1 should not go and look into p 2s instruction

data or stack or p 3s instruction data or stack are you getting this p 1 then what will

happen it may go and you know can change something in p 2s data or p 2s instruction

and then the correctness of execution will not be there when I when I compile a program

and I know it is correct I expected to execute correctly no external factors could come

and change the execution of my program. That is what I guarantee to the user right.

So, since you have coded a program, and you are syntactically and semantically correct,

syntax means the grammar semantics means is the meaning, the logic you are

syntactically and semantically correct, and you start executing in my machine the

operating system should ensure that your program will execute in the way you want. If

some other program comes and right you know changes your execution or changes your

data, then you will not get the desired result. So, one of the responsibility of the

operating system is to see that p 1 should go and access p 2s instruction or p 2s data or

stack p 1 should not have access to the other thing right. So, this is what we call as inter

process protection. I should I call this as inter process protection. One process data stack

and code is protected or isolated from the other process instruction data and stack.

Now how do we achieve this? We achieve this through what we call as segmentation,

one of the ways of achieving this through segmentation. The next important requirement

from the operating system end is that myself. So, what is a stack right. So, what are the 2

operations on the stack, one at a time, push and pop. So, so let us say this is stack and

this is data right for p 1, now I am keeping pushing into the stack. Push, push, push,

push, push, push, push. Then what happens? I go and push into the data of that fellow

right into myself I am pushing, and I go and overwrite my data push, push, push, push,

push, push, push, everything is gone. Are you able to follow what I am saying right?

So, I start pushing into my stack. I have access to my data my code and my stack correct.

So, I start pushing and I keep overwriting into my data I start overwriting into my

instruction right. Then what happen my entire program is execution is completely gone

right. Similarly, I start executing program count, what is the program counter program

counter points to the next instruction that we need to execute. Now what will happen I

keep on executing one after another after another after and I start executing something

from the data I start considering my data as a instruction. So, I keep executing and I pass

the boundary and starts some mistake happened I start executing from data.

Now, these things your operating system should contain if it has given me this much

amount of stack if I overshoot the stack it should say stack over flow. If I start executing

outside my segment, then it should say segmentation fault seg fault core dump all these

things you have seen right yes or not yes. So, core dump all these things should come

now who is giving this operating system should give.

Now, let us go into one fundamental question. I think one of you asked I do not know

who asked this question last time. So, core dump that comment is coming right, who will

give that core dump comment who is printing that comment core dump segmentation

fault who is printing it.

Student: Compiler.

Compiler.

Student: Operating system.

Some program in execution only print it. So, operating system is printing it, but when it

is printing it when your program executes and you do some error the operating system

comes and prints for you. So, suppose I have only one CPU, right this was happening

even when I did programming right where there was only one CPU in that CPU right in

that CPU my program is running the program that is going to do a seg fault right that is

going to do that do that mistaken that program is running and it did that mistake right

how will the operating system come and print it is also a software it is also it should also

a execute to go and print something right I should also execute to print something.

So, operating system is a software which is on your memory ram my program is

currently executing here I did a mistake, but now you go and say that mistake is the

mistake that you have done that mistake what that mistake is being printed by the

operating system, how you are understanding this operating system is also a software it

has to execute to go and print an error message correct now I am executing there is only

one CPU operating system. Obviously, cannot execute there I am executing, I did a

mistake and then there is a statement segmentation violation or core dump whatever, but

you say that the operating system comes and prints there. How can it do are you getting

my question yes or no yes now you tell me how.

Student: Program provides some of callbacks.

Now, how will I know that I have done a mistake, I mean instruction that much I do by

divided by 0. So, I will know that I have done a mistake? You are not writing right you

are not writing callback routines and all inside you just write a program which will do

whatever you wanted to do and there is some mistakes has happened right. The point is I

need the hardware support for it. So, when I do a mistake, the hardware will catch and

then transfer control a, hey you have done a mistake stop. It will throw you out of the

CPU bringing the operating system, and tell operating system hey this guy has done

some mistake go and attend to it. Then the operating system will find out what mistake

you have done and it will go and print it. So, there is a switch from your program to

operating system, you are understanding this correct. So, when you do a mistake when

you do a divided by 0.

So, a division instruction comes to the arithmetic logic unit ALU, with the denominator

as 0 then immediately it will it will stop your execution you are not fit to be executed

you do not know how to even divide. So, it will throw you out it will go and call the

operating system and say this fellow is trying to do something, why do not you attend to

it. So, the operating system will be loaded. So, your program will go out to the ram and

the operating system will get loaded and then operating system will start executing, and

then it will find out what error it is and then print it right. So, for me to, so the thing that

now we are talking of here if you call that the earlier one has inter process protection,

what is this intra process protection right intra process protection. I tried to write I tried

to overgrow my stack, I have been given some space, but I try to overgrow that. I

overgrow I overwrite it into my data I overwrite it into my instruction memory correct.

Now, somebody has to stop me. So, how will the architecture stop you and how will the

control go to the operating system. So, what is the, this is a nice you know this, this

entire you know handling of this is done jointly by the hardware and the operating

system. Now what you need to understand is what is done by the hardware and what is

done by the operating system. You need to have a very clear idea correct. Then you will

appreciate how these things are going happen. So before that some way I should know

that I am overshooting my stack or I am overshooting my execution right. My instruction

is only 2000 bytes I am trying to execute more than that 2000 bytes or my stack is only

500 bytes I am going more than 500 bytes right. My data it will start from here and end

here, but I am now shooting overshooting it, somewhere I should deduct that I am

overshooting it right and those things that deduction is basically done using segmentation

right.

So, segment to sum up segmentation does 2 things one is inter process protection you the

process one you are process 2, you cannot see his code and stack and you cannot see his

code data and stack you cannot execute or look into it. Perfect isolation like putting one

big barrier wall interval that is number one that is inter process protection. The next one

is intra process protection where, you know I as accept I have access to my instruction

data stack, but I cannot overgrow my stack I cannot keep executing beyond my

instructions segment I cannot you know access data beyond.

So, for example, let us take this for p 2 this is 1000 sorry this is thousand this is 1500 this

is 3500 this is 4500 for example, So, I cannot store more than 1000 bytes in my stack. I

cannot access data which is before 1000 or after 3500 all my data should be there and all

the instructions I execute as p 2 right. It should be in the range between 1000 and 1499

right if I do something if I start executing something before 1000 or after 1499 hardware

should catch. How will it catch segmentation will give a methodology for that? So, this is

what we will learn in the segmentation.

The next thing that we will learn is the interrupt service routine will do interrupts ISR

next right nothing. So, we will do interrupt service routine.

(Refer Slide Time: 18:57)

So, interrupts. So, this interrupt has come in the literature, but I will try to change that. I

will call it as exceptions. Exceptions are of 2 types, traps and interrupts. So, there are n

different books and n different books call it n different ways, but let us stick to this

terminology. And this is much more neater than what I have seen on outside. So,

exception what you mean by exceptional scenario, today is an exceptional day means

what. Something that is not normal has happened right something abnormal has

happened.

So when you start executing a program normally it should execute, but something

different than what we expect happen then it is an exceptional scenario. This exception

can have happened due to 2 things one is called trap another is called interrupt. Trap I am

trapped I am interrupted. So, what is a difference between I am trapped and I am

interrupted. Somebody is trapped somebody when do you when you are getting trapped.

So, you do something and you fall into some problem that is called trapping right, like

divided by 0 is my problem it is not the operating systems problem, I start executing and

very I put a 0 in the denominator.

So, it is not operating systems problem my problem corrects. So, I am this is a trap I start

overgrowing my stack right. So, you had given me only say 1000 locations I put 1001

byte into that. So, that is again a trap because it is my thing it is my mistake as a process

right. I go and start seeing his code, I want to copy his code I go and see start seeing his

code and it is again my mistake correct. So, I am not supposed to do some things and

start doing it then it is a trap and the hardware my architecture should find out that I am

trying to do something which I am not supposed to do catch me and go and take me to

the operating system and say this fellow is doing some fraud you are getting this right.

So, that is what we call as a trap. I am doing all correctly, some keyboard is trying to

give an interrupt, some disk is trying to give an interrupt there is an urgent thing

somebody is pressing control c somebody has gone sat on the top of the keyboard.

So, this is not my mistake. So, the interrupt is coming from some external sources some

timer is giving interrupt get out. So, this is all I am this is my problem this is coming

from external and that is called an interrupt. The moment there is a trap or there is an

interrupt immediately what will happen the hardware, will shut down this process and

bring the operating system into existence. The operating system will go and service your

trap or service your interrupt, are you getting this right. What you mean my servicing

your trap or servicing interrupt if you are doing divided by 0 it will say divide division

by 0 error check throw you out right. If it is a stack overflow it is a stack overflow if it

has segmentation seg fault core dump it can give you and go off so, but there are cases

which we will see where when there is a there is a trap, then it will say no, no wait it will

go and do something and allow you to continue right. There are there are scenarios we

will see that.

So, all exceptional scenarios that you land up because of your mistake as a process you

call it as a trap. All exceptional scenarios due to external sources that you call it as

interrupt. I am I clear now whenever there is trap whenever there is an interrupt you need

to service the operating system has to come in and service. Who will deduct the interrupt

or the trap, the hardware will deduct the interrupt or the trap and it is all the hardware is

also responsible for transferring control to a part of the operating system, that part will

start executing and it will do the service. This whole thing is what you will learn in your

second assignment namely interrupt service routine clear.

Now, the third is virtual memory when you write a program do you really care about

how much memory is there. When you write a program you do not care about lot of

things. You do not care about how much memory is there, what is the compiler what

everything right one of the important thing is you do not care about what the memory is

right. Suppose you are given a 32-bit architecture what is the maximum addressable

memory 4 GB 2 power 32 bytes. So, that it will be byte addressable architecture. What

you mean by byte addressable architecture, every byte can be individually addressed. So,

if I have a 32-bit byte addressable architecture; that means, I could un store up to 32

bytes. So, 4 GB ram I can have. Within that 4 GB some will be occupied by some

process some will be occupied by some other process. So many things will be occupied

by. So, many processes correct and your process will occupy only some part of the

memory, but you can still write a program which is as large as 4 GB, in terms of it can

handle huge data it can handle huge stack and some code.

I can have a very big program and still get it executed on a machine which has physical

memory of even 2 GB correct. I could still have a 4 GB size program execute on a ram

of size 2 GB. So, as for as the programmer is concerned, the operating system says hey

there is 4 GB available to you. So, the programmer assumes that there is 4 GB and he

writes a program. The compiler assumes that it is 4 GB and it compiles the program

correct.

Now, the operating system take it has only say 2 GB ram in which it can give probably

say some 512 KB for or 512 MB for this program, within that 512 MB it will somehow

execute that 4 GB program and give back. So, as for as how does how does it happen

that is what we are going to learn in virtual memory right. So, for as the programmer is

concerned he is not bothered about how much physical ram is there he is given the

operating system presents a view of 4 GB. Both for the programmer and for the compiler

assumes that has 4 GB compiler assumes that their programmer assumes that there is 4

GB. And he writes a program the programs get executed right the operating system will

take care of executing a 4 GB ram 4 GB program on say a 5 12 MB ram.

How does it happen this cannot happen again with just the operating system support

right? There is a hardware support that is needed and then operating system support that

is needed. So, we will understand what the hardware does and what the operating system

does, with respect to virtual memory, and the last thing is about what we call as task

switching. So, what is task switching? So, if you look at Linux right there is something

called supervisor mode road route and there is some normal user route is sort of dada,

today all of you do every action with your mobile phone right, those days when all

programs have to be written and you forget your password in you know in your d c f

right. Route is god night you should call him, hey come reset yaar, I forgot my password

he will abuse you, all this you should take what beautiful words yaar common.

 Now, you do not need all you have personal laptop and first your fathers are rich to give

you laptop, second thing is means that you have use your fathers money right. So, use it

properly. Second thing that you need not to now the notion of a d c f is gone right. At last

semester assignment you did in your laptop correct. So, lab in the lab is in the lap right

so. So, now, this semester also you can do it here you need not actually go to a lab to do

a computer science lab fine. So, but those days’ route is and even today when you look at

major infrastructures today like you know your mail servers right your CSE mail server

CSE is a small thing, but if you look at bank mail server right or a bank you know

database.

So, the admin is a very powerful guy right. So, there is certain things that you can do as

an administrator. There has certain things you can do as a normal user. So, the entire

system should have 2 parts. One is the supervisor mode or 2 modes, I should say one is a

supervisor mode or another is user mode. So, all the programs normal user program run

in the user mode while all some very important things like accessing devices etcetera

will happen in the supervisor mode. So, as a program, right as a process I can belong to

the operating system, I can also belong to a normal user. So, the process can be classified

as a user process as a OS process. The OS process runs in a different mode; the user

process runs in some different mode right.

So, each process has the privilege. If I am a OS process, I am little more dada than the

normal user process correct. So, every process has something called a privilege level

right.

(Refer Slide Time: 30:07)

So, in a typical 4 tier operating system, there is something called kernel that is inside

after that there would be some system programs like device drivers etcetera. Then there

will be some middleware like your run time environments the virtual machine you saw

last time right. So, those type of things or your compilers etcetera. So, these are some

development layer, development aids right or we can call it as middleware and above this

will sit your application program right. So, there is privilege level privilege level 0,

privilege level one, privilege level 2 privilege level 3.

The most powerful is the kernel followed by device drivers followed by development

aids followed by application programs. So, this is what you call as a tiered operating

system. Not tiered tired or multi tired operating system. Tier means it multi-tiered

operating fine. So, the architecture what is the support of the architecture for you know

maintaining this privilege levels. Every process should be associated with one of these

privilege level. I am a process means am I a process of privilege level 3 or 2 or 1 or 0,

somewhere I have to maintain that information. And when I want to switch from one

privilege level to another privilege level I should do it with some amount of care. I got

arbitrarily switched then what happens I become an if I could arbitrarily switch from

privilege level 3 to 2 privilege level 0 then I become the super user and change all your

passwords correct.

So, there should be some amount of protection that is necessary. So, all these things

basically, so how to maintain these privilege levels, and how to switch from one

privilege level to another privilege level these are the things that we will learn in the

fourth assignment which is task switching.

Now, as you see here we have been more or less I have been talking about one point very

clearly right.

(Refer Slide Time: 32:46)

All these 4 assignments finally, has one flavor which is what we call as the security right.

So, I thing I have told in the previous course, if you look at 1980 to 90 what was the

thrust in computing engineering computations. How do I solve Runge Kutta method, first

how will I compute cos hyperbolic fast, how will I do atmospheric weather calculations

fast, these are all the big things? So, they are talk about how many million instructions I

can do for second 1990 to whatever 2000 the whole story was media right. Jurassic park

how will I shoot movies; how will I do all multimedia all these things.

So, it for us consume how to attract the consumer towards computing. A non-computing

consumer to computing, right. So, to buy a computer basically media players all these

things consumer electronics came up in a big way where computer got this. 2000 to 2010

this is all mobile correct now 2010 to 2033 here I am going to retire.

 This is going to be security correct. Actually 34, because now you have start using your

withdrawal the cash loss and all these things coming in place, I think that is way the

economy is going to grow that is way you know world going to move. So, it is going

towards. So, you are going do lot of ecommerce, your health is going to get maintained

by your mobile phone. So, already very close to your heart right. More closer than your

girlfriend or boyfriend right or wife no problem.

So, now, when you have started using these things in the great way then, that is lot things

that we need to do. So, that you know your confidential data that things are not

compromised is very important and so, security is something like you know it is like a

habit, which should suppose you have been sleeping in every c o class on the last class I

say keep awake know it will be very difficult. So, in the initial days itself you should get

used to habit not at the end.

Now, unfortunately last 30 40 years’ computers have been in existence, nobody gave a

damp for security. Suddenly one fine you say I want to make this secure, I have one 10

million lines of operating system and middleware code and executing on one million

transistors, now what why would they talk about security right. I want to retrofit security

into this security is a habit and at the age of 50 you try to for a computer you are trying to

say now you inculcate this habit in a very big way it is not going to happen so easily

right. So, first thing is first we should start talking about security in the courses right.

That itself we have not talked right. Today can you buy a CPU with a single core no.

Right CPU the single core the 8085 something is now 4000 dollars because it is ethnic

value. So, the last 50 left out and they will sell it.

Now, we have multiple course, now how many if you just take sigma of across the world

university curriculum, including all our own courses how many courses are teaching

parallel algorithms. You learn data structure you learn compiler even what I taught you

did I tell about parallel how to do this in parallel no we are only still talking about

sequential program correct. This multi course started somewhere in 2004, 12 years’

curriculums are not matured to talk about concurrent programming at all. Whatever be

that reason there are many reasons we can talk about that philosophy later.

But now something which is decayed old we have not still adopted now we are going to

talk about and that is much simpler to handle as a concept, as a technology as a process

then what we are talking for security correct. Because there everything is at least open

for us to understand in security we do not know what is inside, we do not know what is

thus anyone know one million lines of Unix code, even the original originator of Unix

may not know, is not that what a code does what that what it does when it is interacting

with other parts of codes. So, the security issue is not about just one piece of code, but

multiple components trying to do.

Suppose there is a breach in say you know in credit card swiping, that breach could

happen because of 20 different vendors today, understand. 20 different people are

involved to from the moment you swipe a card to the point it goes to your bank account

and it says know you app you get a approval right. 20 different components are there. So,

if I talk about a breach somebody says know for a breach you should be responsible

somebody says it is, not we can not assign responsibility today there are 2 different

fellows who are involved and the fault can be on multiple people, the fault can be of no

one right I have done correctly he as also done correctly, but the way we both interact

has some fault.

Now whom do we give the responsibility of this interaction right correct. Right, some

major companies say that they will keep the server in the sea, in some international

waters then they have not bound by the tax rules of the any of the nation’s right. So, if I

keep it in international water then I it is not India it is not China it is not Pakistan

anybody. So, I will not pay tax to anyone you got my point. So, if keep my server and do

business in international waters, then no country can claim tax know to which country

will I pay and so, these type of this is philosophically the question that we are trying to

answer.

So, today security is becoming a very big issue. And for us to learn security we have to

learn from the grass root level that is that is my call here. So, that is why one of the

lectures that I had sent the YouTube videos and other things, which basically talks about

all the 4 assignments that I have put here. Those are the beginning points of you know

making your system, secure and to 5 to 10 years later the biggest jobs will not be in your

Uber or your Morgan Stanley or Goldman sacks, it will be in security even if you go

there it will be in security. So, let us try and give you a vision about that and that is what

we will be covering here.

So, my whole thing will have a thrust on security because that is what I feel is the next

gen hard topic, when you all go out into the market. You do cloud computing you do

data analytics you do everywhere there will be a security there will be a privacy issue

there is some NDA that you need to sign right. So, you should understand those

languages. I think I have to train you and that is what we will be doing in this course.

