
Computer Organization and Architecture
Prof. V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 20
Dynamic Instruction Scheduling (Part - I)

So we stopped at this point in the last class.

(Refer Slide Time: 00:20)

We explained what the instruction fetch unit does it can bring more than one

instruction at a time. The registers status indicator, there is an entry for every

register and if that entry is 0 that means the latest value is there in the register file

otherwise it is in that num it is the execution unit number which is currently

executing. And then there are reservation stations marked red. So, if a instruction

has to wait for some answer it will wait there and it will know which unit is having

that and then every execution unit when it finishes it puts the result in that common

data base and that along with the unit number so that the result along with the unit

number will go to the register or memory. And on that way it will also through that

you know purple path and every reservation unit can see that, right.

So, if the reservation unit is waiting for somebody then it will get it here itself before

going to the register file. And this is precisely what we told as the operand

forwarding. Now, we will now go and explain through an example how this hardware

is going to take care of the raw hazard: I almost explained you operand forwarding

we will see with an example. The WAR hazard and the WAW hazard: it will also do

register renaming it will also do some renaming and it will handle these WAR and

WAW hazard right and all these things we will see using an example.

The instructions are fetched one by one and decoded: one by one in the sense that in

one cycle there will be many instructions that will be decoded and you will find the type

of the operand and if there is an execution unit which can do that it will be pushed to

that execution unit. So, there are multiple execution unit it is not necessary that every

execution unit will do every operation. So, there can be 2 units specifically dedicated for

load and store, there can be 2 units specifically dedicated for integer and logic

arithmetic, there can be an unit dedicated for floating point for multimedia etcetera.

So, I will fetch one by one in the sense I will fetch all the instructions right, but I have

to in one cycle I will process it in a such a order that I will go and allocate if there is

an I will decode the instruction and if there is an execution unit which can handle it I

will put it. So, in one cycle this instruction fetch unit can process more than one

instruction please also understand that I have to process the instruction one by one

because then only I will understand the data dependency you understand right then

only I can understand the data dependency. So, let us go the register status

indicator again indicates whether the latest value of the register is in the register file

or it is currently being computed by some execution unit.

(Refer Slide Time: 03:55)

And if the later is true that is it is computed by some execution unit then the register

status indicator will store the number of that execution unit. So, that somebody

wants to use that we will know which execution unit is currently processing it. If all

the operands are available then the operation proceeds in the allocation execution

unit allocated execution unit else it will wait in the reservation station of the allotted

execution unit and it will be pinging the common data bus.

(Refer Slide Time: 04:32)

Every execution unit, once it is finishes it will write the result along with unit

number because if somebody is waiting for it they will know this unit is waiting on

to the CDB which is forwarded to all the reservation stations through this purple

thing and it to the register file and memory I think we have done it 3-4 times.

Now you will know almost by heart.

(Refer Slide Time: 04:40)

Now, let us see we will take. So, these are the 6 instructions that needs to be

executed add R 1 R 2 R 3 store R 1 R 4 plus R 50 store the result of R 1 into R 4

plus 50 add R 1 R 5 R 6 subtract R 7 R 1 R 8 store the result of R 2 to R 4 plus 50 4

add R 1 R 9 R 10. So, I have just restricted no there are many things let us see how

it is going to execute. Now these instructions are processed in one cycle 6

instructions are processed in one cycle. Let us assume for the sake of argument

that these are all the reservation stations currently all this there are 6 units let us

assume that there are 6 units and all the units are currently empty, right.

Now we are going to start executing and the register status indicator are all

initialized to 0; that means, the latest value of all the registers right are available in

the register file. So, this is one snapshot of the code we will just take it and see how

it is going to be executed. Now what I am going to do is I will give 6 slides; in the 6

slides I will tell you what is happening to each one of these instructions, but one in

practice what will happen is all the 6 instructions will come at a time and all the

operations that I am going to talk of in the next 6 slides will happen in one cycle I

need to get more than one instruction to execute per cycle.

(Refer Slide Time: 06:22)

Are you able to follow what I am trying to say write now what will happen first add R 1

R 2 R 3, now R 2 and R 3 what is the value of R 2 R 3 they are 0s R 2 and R 3 are

0s; that means, they are available. So, immediately what will happen it will be

allocated to unit number one look here right now where is the latest value of R 1 it is

not in R 1 it is currently being computed by unit number one and that is why you get

this one here. So, the moment add R 1 R 2 R 3 comes R 2 and R 3 are checked

they are all 0s; that means, the latest value is available in R 2 R and R 3.

Now what you need to do I am computing the value of R 1 here I am going to add R

2 R 3 and the answer is going to be one. So, there is an addition unit. So, I will now

give it to that addition unit to go and fetch the data and do that, but I should tell the

instructions that are following [FL] R 1s value is not in R 1 it is currently being

computed in instruction unit execution unit number one are you able to follow and

that is why I have put for R 1 the value one, now right. Now next all of you followed

this very clear no doubts now in the same cycle please note it is not going to be

another cycle in the same cycle now store R 1 R 4 plus R 50; this one.

(Refer Slide Time: 08:06)

Right now what is right? Now what is this store going to do it is going to read from R 1

please it is also going to read from R 4 if R 4 is being computed be some I should you

know. So, it is going to read from R 1 it is also going to read from R 4 please note

because I need to compute the address right and then it is going to store in R 4

plus 50 right. Now R 4 is available to it right R 4 is available to it fine, but R 1 it

comes and sees the registers status indicator has 1. That means, the latest

value of R 1 is currently being computer or is going to be computed in execution

unit 1. So, it will go and say I will wait for one. So, it is waiting for one.

So, the I 2 is allocated to execution unit two, but it is not proceeding it is waiting

for the result of one you all understand how I got this w one obvious right. So, I

come here I need to read R 1 and also R 4 this is very very important please not

that I have read R 1 and also R 4. Now when I am trying to read R 4 R 4 is

already available, because it is status indicator is 0. So, R plus 50 I know the

address right, now I have to write into that address what should I write R 1 I have

to write now where is R 1 is not in the R 1 it is currently being computed be

execution unit 1. So, I am waiting for it fine followed any doubt.

Now, what is going to happen I am going to get add or 1 R 5 R 6. Please note R

5 and R 6 they are available, right.

(Refer Slide Time: 10:01)

So, we can start execution, but now I make the register indicator 3 I allocate I add 2

instruction execution unit 3 and I say the latest value of register one is now in 3

subsequent instructions after this fellow if they want to read R 1 where should I wait for I

should wait for 3 please note that this I 2 is already waiting for one this I 3 whatever is

going to follow I 3 will now stat waiting for 3 I do not need one anymore here because,

from now on if somebody wants to read R 1 he has to look at execution unit 3, because

the latest value of R 1 for these instructions R to be executed R available with execution

unit 3 is being computed execution unit 3 are able to follow, right.

So, that is why I make the register indicator 3 is it fine. So, let me just do it once

more. So, I start with this is the program that I want to execute. Please note,

please give undivided attention right now I i get add R 1 R 2 R 3 R 2 and R 3 are

already available in the register file because R 2 and R 3 are 0s right. So, now, i;

so, this instruction all the operands necessary for this instruction are available.

So, I can start executing the instruction.

I start executing the instruction in execution unit 1, but in the register indicator status I

say that the latest value of R 1 is not in R 1, but it is in execution unit 1 next step I get

store R 1 R 4 plus R 50. So, I have to read 2 values R 1 and R 4 R 4 is already

available correct you know why I have to read R 4 right I have to compute the address.

So, R 4 is already available R 1 is not there where is R 1 it is in execute it is currently

computed in execution unit 1 who is telling this the register status indicator is telling.

So, I allocate this instruction to execution unit 2 and make it wait for one right it is

waiting for one and it is allocated for 2. Now the next instructions add R 1 R 5 R

6 R 5 and R 6 are available. So, and there is an execution unit also available.

So, your third instruction set can start executing in the execution unit 3. Now for

subsequent instructions which are going to use R 1; R 1 is no more in 1 R 1 is

now in 3. So, I go and erase one and put 3 here are you able to follow the very

[FL] thing right it is not even I by millionth of your pulley problem in physics.

(Refer Slide Time: 13:25)

Now sub R 7 sub R 7 R 1 R 8 now R 8 is available R 1 is not available it is still in 3.

So, the fourth instruction will be allocated to execution unit 4 and that will be waiting

for the third fellow to complete right now and the latest value of R 7 where it is going

to there it is going to be in 4. So, your register status indicator is now updated to 4.

Now this fourth instruction cannot proceed to execute, because it is waiting for R 1

and that R 1 is currently computed by execution unit 3 correct and the result of that

is going to be written in R 7, so in the register status indicator for R 7.

Now stores 4 because somebody else who wants R 7 beyond then they have to

wait for 4 to complete you are is it fine. Now the next is it any doubt (Refer Time:

14:34) fine can I proceed, yes.

(Refer Slide Time: 14:39)

Student: Yes sir.

Now next one, now store R 1 R 4 plus 54, right: now I have to read R 4 and I

have to read R 1 R 4 is already available because the register status indicator is

register status indicator is 0 R 4 is already available, but R 1 is currently being

computed by whom execution unit.

R 1 is R 1 is currently being computed by execution unit 3. So, I will go I 5 will

also now go and wait for execution unit are you following R 1 is currently being

computed by execution unit 3.

(Refer Slide Time: 15:29)

So, I 5 should also wait for execution unit 3 right now next is add R 1 R 9 R 10 right

R 1 R 9 R 10 note that R 9 and R 10 are available correct. So, this get this is start

executing in it is execution unit 6 and the latest value of R 1 beyond that somebody

wants we will now be available in execution unit number 6 you all get this now what

is happening all these operations should happen in one cycle, then only you will get

that super scalar architecture right. Now how do we construct such a fetch unit that I

will keep it for computer architecture course? We will not deal it in computer

organisation course that is really advanced topic right, we how to about doing it, but

this is going to happen and when it happens now what will what are the things.

Please note that I 1 I 3 and I 6 are executing while I 2 and I 4 and I 5 are waiting. Please

note that I 6 executes before I 2 I 4 and I 5 I 3 executes before I 2 that is why we call it

as out of order execution out of whose order compilers order compiler has given some

order, but we have now violated that order and we are going out of order execution.

Now all the fellows who have the true dependency or what we call as true dependency

is equivalent to raw right read after write all those 3 follows are waiting they have to true

dependencies these 3 fellows are waiting right let us go back.

These 3 fellows are waiting the one sorry this fellow sorry this fellow is waiting for one

to complete and these 2 fellows are waiting for 3 to complete correct. So, the true

dependencies are handled there is. So, this hardware what did I tell this hardware has

to handle read after write and write after read and write after write read after write it is

handled here if I am dependent on a previous instruction and that instruction is currently

being computed I will wait. Now what will happen when finishes it will write the answer

on to the common data bus in to the purple bus we saw and 2 is waiting for one answer

one the moment it sees one it will go and grabs that and it will start executing.

Similarly when 3 finishes, it will write the answer on the common data bus the

moment 4 and 5 they are waiting for 3 they will be pinging the common data bus

when it comes immediately it will start executing. So, when the answer is going

to the register or memory file it is also forwarded to this and they will catch and

start handling. So, read after write hazard is completely handled here and this is

how operation forwarding works any doubt in this.

Student: (Refer Time: 18:39).

No doubt, right, yes or no can I proceed any doubts no; now how is; now I am having

out of order execution how is the WAR and the WAW hazard being handled how is the

write after read and write after write hazard being handled that is quite straight forward.

Now what has essentially happened I 1 is executing I 2s R 1 is waiting for unit 1.

(Refer Slide Time: 19:08)

I 2s R 1 is actually waiting for unit 1 I 3 executing I 3’s I 4 and 5’s R 1 are basically

waiting for unit 3; that means, what I have renamed there R 1’s with U 3 and this R 1’s

with U 1 are you getting this. Similarly now, subsequently if there is an R 1 here it will be

waiting for unit 6. So, what is this? R 1 got renamed by U 1 these R 1 got renamed by U

3 correct right register renaming happens by default correct then what happens once

the instruction finishes it will write in the common data bus and it will also go and see if

there is any register waiting for it for example, when the sixth instruction finishes right

finishes it will go and if this value is 6 all the value that is 6 it will go and make it 0.

That means 6 instruction is completed the latest value of R 1 is in register now it is in the

register file it will go and make that 0. So, when a instruction finishes and if there is any

register status which is indicating that fellow right when and unit finishes if that fellow is

there on the register status indicator then it will be it will make 0. For example, if 4 finishes

then it will go and make this 0, unless somebody comes if one finishes it will not make this 0,

because by the time one finishes this already became 6. So, whenever I am writing

something into the register file unit K is writing into register file it will go and check all these

register status indicator if any of those fellows have the value K, it will go and make it 0, fine.

So, what has happened here your operand forwarding happened you are waiting for a result

when there is a true data dependency that happened and whenever

there was a named dependency like WAR; WAW for example.

There is a WAR between 2 and 3 2 is reading while 3 is writing the WAR hazard

between 2 and 3 has been resolved by renaming 2 right the WAW hazard

between sorry the WAW hazard the WAR hazard between you know 6 and 5 and

6 and 4 are got out by U 3 renaming this.

So, there will be and right are you are you getting this. So, there will be no, you

know all the write after read hazard just disappears and this renaming happens in

(Refer Time: 22:21) are you are you with this. Now what happens is- now when I am

writing to the register file when I am writing back in to the register file please note

that this one 3 and 6 are writing to R 1 1 3 and 6 are writing to R 1. Now 3 may

finish before 1 or whatever there could be some other one here which is suppose

we are waiting for R 5 somewhere essentially 3 may finish before one and 6 may

finish because here you know all the fellows who are writing on to R 1 are executing

simultaneously, but it may be the case where one fellow needs to wait also.

So, then what could happen is. So, what we have after this is something called a

re order buffer reorder buffer this will be in the path this will be in this sorry this is

called rob reorder buffer that will be here; so the instructions as they finish right.

The instructions as they finish will be loaded in to this. For example, in our case I

1 will finish I 1 then I 3 then I 6 I 1 I 3 I 6 will finish in one slot. So, I 1 will be here

then there will be one gap then I 3 then 2 gaps and I 6 will be here.

Then your I 2; I 2 will finish I 2 I 4 and I 5 also can finish I 2 is a store may be I 4 can finish

and so on right. So, the moment I finish I go and commit all the instructions above it in one

shot. So, that that is the reorder buffer, because what will happen is that at the end at this

point see after 6 when I am viewing them result of R 1 it should be the answer got by 6 I am

taking care of all the execution within the micro architecture, but when I am writing to the

register file I should reduce I should have the latest value there right.

So, what I do is even though I complete instruction earlier I keep it in a reorder buffer

and assignment and instruction finishes all the instruction all the set of consecutive

instructions from the top I go and commit it. So, I 1 finishes I 3 finishes I 6

finishes the movement I 2 finishes I 2 I 3 will be committed the movement I 4 and

I 5 finishes I 4 I 5 I 6 will be committed that will do in one shot, right. So, by using

this reorder buffer I will also get a consistency in my register file. So, that when I

am looking at this point when I am looking at this point here I will get a latest

value of R 1 when I want to read it right, yes.

Student: What is the necessity of (Refer Time: 25:51) committing the instructions

as soon as you find them find that the top few of them are consecutive.

The top that is no more necessary right, I want to have reorder buffer reorder buffer

is also finite length. So, I do not want the reorder buffer I cannot have infinite length

of reorder buffer. So, when I find the some instruction can be committed, because all

the instructions above it has are completed I would love to go and flush it out,

because reorder buffer is of a finite set. So, what should be the size of the reorder

buffer 6 at any point of time 6 instructions will be executed? So, I will have it as 10 or

12 so, that some instructions can wait for long, so, the other instructions can

proceed. So, I will keep on populating that reorder buffer once it finishes I have to go

and flesh it. So, the construction of the fetch unit and the construction of the reorder

buffer are topic of advance computer architecture.

So, if we take the elective on computer architecture you are expected to be taught on

this you know this is 2, 2, 2, 2 large for this we do not have time for this, but you can go

and read how this instruction fetch unit can fetch 6 instruction at a time resolve it. So,

again logic that is basically logic you can start designing you can use your corn of map

and also design that and then how do we go and commit how can see the common data

bus in a single cycle has to commit many instructions and how the reorder buffer works.

So, these things are you; you can design it, it is all the concept is this, but you could

have you know different ways of handling that right question.

Student: What is meaning of reorder method committing something?

Reorder buffer committing means that it is there in the reorder buffer it is waiting for

some instruction about to finish once it finishes I flush it out and put that value into R 1.

So, that is what we mean by committing it latest value of R 1 will not be in the R 1. It will

be in the reorder buffer once this is over then I will go and commit it R 1. So, some

interesting points come up the thing is that when the register status indicator is 0 right,

when the register status indicator is 0. That means, the latest value of R 1 as for as; that

means, the latest value of R 1 as for as we have considered. So, far we said it is the

register files it need not be really in the register file it can also be in the reorder buffer.

So, I have to go and check the reorder buffer hey R 1 is there no then go back to

that. So, if you if you guys interested then what you can do is that you need to learn

a language called blue spec I am writing above here w w w dot blue spec dot com

you will lean a language called blue spec and then look at our you know Shakthi

program where we have done a super scalar thing. So, you can actually go through

the code and see how we construct reorder buffers how do we construct instruction

fetches damn tough thing right, but then the language which is. So, expressive that

you can understand it quickly right, but you have to learn language blue spec.

If you have to do it in a low level language like Verilog or the or the hardware

description language you did see please note that this is to be this is not a C

program correct instruction fetch the logic I am talking all these are going to be

realised on hardware right. So, I need to write the logic for the instruction fetch I

need to write the logic for the reorder buffer. So, that is not going to be a joke

verifying this see actually again I repeat right this is not software what happens in

software I have already told you right you make a bug. Now you make the user find

out what the bug is you correct all the bug and resell to him as a next version of

software within hardware we cannot do that. So, how do we even verify that this is

working correctly the already we have seen atomic instructions correct.

So, where we have seen race conditions this and this trying to go in parallel now in

hardware this is going to happen now I am going to get multiple instruction I have to see

how those race conditions should be avoid synchronisation to happen lot of things come up

there and that is really advanced. So, if you right; so you can go and look at our out of order

implementation same somewhere if you can learn this then next year you can look

at it and appreciate how it is being done. So, we have handled all WAR WAW

and raw we have done operand forwarding we have done register renaming. So,

what is not taught which is also not taught everywhere in the globe as a part of

your curriculum means; how this instruction fetch unit and the reorder buffers are

basically designed the real digital design then everything else is taught.

