
Computer Organization and Architecture
Prof. V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 18
Data Hazards

[FL] start. Good morning. So, last class we saw about pipelining and. So, this was the figure

where we stopped with respect to pipelining.

(Refer Slide Time: 00:28)

So, what we see here is that five instructions can be executed concurrently and each

instruction is in a different stage of a execution of the instruction. So, there are five stages as

we have seen here. So, every instruction is in a different stage now the question remains the 2

questions here. Now question number one is it possible to have such a free flow is there

something that will hinder. Question number 2 is that will every execution take the same time

for example, we have seen floating point addition floating point multiplication to a large

extent you know our Wallace tree multiplier addition, they all take almost same time, but

there are operations like square root of a floating point number you know sin x cos x there are

some lot of functions that are implemented divisions for example, we will take much more

time than a normal operation. So, the assumption that every instruction will take the same

time is incorrect. So, that is also something that we need to keep in mind.

Keeping all these thing mind what you will now do is that you will see how to go away from

this ideal case right the ideal case is that the instructions can flow what are the things that can

stop a free flow of instruction, what are the things that could stop I 2 to flow immediately

after I 1 is there some conditions which will stop I K to immediately follow I K minus one

right. So, we will look at those details and finally, come out with what we call as the super

scalar architecture.

So, what how to build a super scalar architecture what is inside a super scalar architecture is

what we will finally, see. Now before going forward right why do we call some architecture

as super scalar what do you mean by super scalar there. Now we will see this architecture can

also do more than one instruction per cycle. So, the cycles per instruction CPI we call cycle

per instruction is less than one. Number of cycles average number of cycles I spent per

instruction if it is less than one then; that means, I am doing I am a super scalar architecture

what you see here is that every instruction one unit I finished one instruction right. So, what it

seen pipelining in 10,000th instruction comes at 1004 10004 unit the first instruction finish at

fifth unit, second instruction at sixth unit and so on. So, every unit I get one instruction what

is that unit basically cycle right.

Every cycle I get one instruction. So, cycle per instruction is one this is not super scalar can I

get something like CPI is less than one; then you become a super scalar architecture. So, let

us that means, what there should be you know multiple issues we will come to that. So, how

do you build such an architecture and that is very important for you to understand, because

modern architectures today are super scalar architecture right. So, let us hope. So, we all saw

this slides that they.

Now, we will go to.

(Refer Slide Time: 04:04)

Now, ILP is called instruction level parallelism pipelining is an example of instruction level

parallelism because I execute more than one instruction at the same point of time that is why

we call it instruction level parallelism. Now let us see what will happen that will hinder the

free flow of instructions right and that is what we need to address now. Let us take these 2

instructions load there is a small variation in syntax load R 2 plus ten comma R 1; that means,

it the content of R 2 plus 10 is loaded in to R 1 right we will have a small change in syntax

that is. So, R 1 gets the content of load R 2 plus R 2 plus 10. So, from memory I am loading

in to a register. Now what add does it reads the value of R 1 and R 2 then it sees R 3. Now

unless load completes I cannot fetch the data please note let us go back to our pipelining here

before the pervious instruction finishes execution I cannot fetch the data for the next

instruction.

Before the previous instruction finishes that is when the previous instruction stores back the

value in to R 3 then only or R 2 then only this the fetch data of the next instruction can

happen. So, the next instruction cannot follow the previous instruction because there is some

dependency this dependency is called a hazard. Now we will go an look at this hazard in a

now what happens here now I see R 1 is being returned here returned in to and unless it

finishes the writing I cannot read that value if I read the value before this finishes writing I

will get some previous value of R 1 and that is incorrect.

When I am executing the program one after another, this add needs this value of R 1. So, I

cannot fetch the data for this add unless this instruction finishes execution are you able to

understand this. So, if this is I 1 and this is I 2, this I 2 cannot follow I 1 the I 2 will be

fetched it will be decoded then I have to wait for I 1 to go and finish the results store back the

results then only I can fetch back the fetch the data for this.

So, 2 cycles this pipeline is stalled s t a l l e d; this stalling is because there is a hazard there is

something undecidable that is why I call it as an hazard and this hazard is because of what?

This hazard is because of data right that fellow is you go into dump some data which I need

since that fellow has not finished storing the data I cannot fetch the data because the latest

data is in the hands of the previous instruction correct. So, I am stalling this pipeline because

there is a data dependency hence this hazard is called a data followed yes or no. Now this

hazard is also called read after write hazard I am reading add is reading after load write wrote

in to this right. So, this hazard is also called as raw hazard or read after write hazard

followed. Now there will be others type of hazards we will see as we proceed. So, this is read

after write hazard now let us see what is happening here R 1 let us take the next example R 1

is written R 1 is read R 3 is written R 12 is read 3 thing R 1 is read, R 3 is written and R 12 is

read here again R 1 is written here again R 1 is read R 2 is read R 12 is written ok.

You are seeing this now between one and 2 there is a read after write hazard because R 1 is

read and R 1 is written. So, there is read after write hazard between one and 2 let me call it I

1, I 2, I 3, I 4 R between 3 and 1 please note that there is something called write after write

hazard. Why is this a problem right if I have what I mean by a write after write hazard; for

some reason since I have now what I want to have super scalar architecture; that means, more

than one instruction should finish at the same point of time, when I am constructing such an

architecture what happens if I 3 finishes before I 1 if I 4 is going to follow I 3 I 1, what will I

4 get is the value of I 1 and not the value of I 3 right. So, when I start executing more than

one instruction in parallel right then what happens I have to have some control over how the

instructions complete because I allow all the instructions to execute.

Some reason we will come out how why that possibility can be if I 3 finishes before I 1 and

then I 1 finishes last, I 4 will get I one’s R 1 and not I three’s R 1 you got this. So, that is why

we call it as a write after write because I 1 is also writing I 3 also writing, we call it as a write

after write hazard. Similarly there is also a write after read hazard between I 2 and I 4

because R 12 is re read here while R 1 is R 12 is returned here. So, here write after read there

is a write after read here R 12 is read here while R 12 is written here why again this is a

problem because if I 4 finishes before I 2 or I 4 finishes before I 2 starts executing because

anything we are we are introducing parallelism here and I 4 finishes before I 2 then what

happens I 2 will get the R 12 of I 4, but I 2 should get the R 12 of some instruction before it

you are getting this.

So, the moment I go and say that I will now start I want a super scalar architecture where the

number of instructions I finish at the say at they single cycle is less than one; that means, I am

pumping more instructions in to the system, and when I pump more instructions in to the

system then what will happen all these instructions can start executing concurrently and there

can be some who finishes first and who finishes last I do not have a control over if I do not

have proper control, then what will happen I will land up with these type of data hazards.

And the data hazards are read after write after write after read. If I have a normal pipeline that

is one instruction after another instruction I do not want a super scalar then the only problem

that will come is read after write, but if I have a super scalar pipeline then I could have read

after write after write and write after read all the 3 possible data hazards. Are you able to

follow yes or no? Now we will take a super scalar architecture construction and show how

these hazards can come and how the architecture handles it right how the architecture itself

handles it. So, the compiler can be dumb compiler can need not take care of all these all these

hazards, the compiler just compiles and leaves it gets it just gives us sequential program. The

architecture there is lot of hardware that is built inside the architecture which shall take care

all of these data dependencies what is that architecture or how can we build one these are

things that we are going to discuss.

(Refer Slide Time: 13:49)

Are you able to follow fair enough good now? So, this is our architecture we want to build a

super scalar architecture. So, CPI should be less than one, I want CPI should be less than one

here and the main issue here is that I can fetch more than one instruction at the same time, I

can decode more than one instruction at the same time, I can go and fetch data for more than

one instruction at the same time all this I can do then I will go and execute I will have a

multiple execution in it instead of one adder I will have 4 adders correct it is a one multiplier

it would have 5 multipliers. So, I will have multiple execution units.

So, multiple instructions can execute at a same time and multiple is instructions can store

back that data at the same time if I am going to enable all these things then I can achieve this

CPI less than and the more important thing is different instructions will take different amount

of cycles to complete. So, then I can basically make each one of these execution units as

pipeline so that I could pump more and more data as in when it comes. So, this is also very

interesting part that for example, I can do 4 floating point multiplication while one floating

division occurs.

And that is where you will land up with what we call as the out of order execution. So,

suppose I have one floating point division followed by 4 floating point multiplications. So, I

have 2 floating point units let me say FPU 1 and FPU 2 are 2 floating point units then what

will happen the FPU will start executing here it will take say 40 cycles for example, while the

f mul which is following let me say this is I 1 I 2 I 3 I 4 I 5 your I 2 will come and start

executing it will finish off in 4 seconds.

So, actually I 2 completes before I 1 right I 2 actually completes before I 1 completes then I 3

will start executing it will also con conclude you know it will also complete before I 1

completes. I 4 will start executing it will also complete before I 1 and I five and I 1 will

complete. So, there are at least I 1, I 3, I 4 3 instructions which complete at before I 1

completes right. So, in that essence we are doing what we call as out of order execution out of

which order there is an order given by the compiler what did the compiler do? It gave one FD

which we call it as I 1 followed by I 2 I 3 I 4 I 5 those are all floating point multipliers

multiplication instructions. Now what has happened here FD starts executing it takes 40

cycles before FD could complete it is execution which was I 1 completes it is execution I 2

completed I 3 completed I 4 completed and I 5also completed when I 1 completed.

So, essentially it is not that the previous instruction completes and then the next instruction

completes and then. So, the way I am executing is basically out of order which order out of

order of the order that was actually given by the compiler are you able to follow. So, this type

of an architecture you know this type of an architecture can basically you know get the super

scalar behaviour. So, if you want the super scalar behaviour we need this type of a pipeline

environment is it fine.

(Refer Slide Time: 17:29)

So, what are the difficulties in the super scalar construction? Difficulty one is that I have to

ensure no data hazards there will be several instructions that are executing I have to see that

there are no data hazard meaning if there are data hazards I need to handle. Now what I mean

by handling data hazard? I will say oh if I 1, I 2; I 2 depends upon I 1 then I will say I 1 I just

keep I 2 waiting till I 1 finishes if. So, let me say I 2 I 1, I 2, I 3, I 4, I 1 depends upon I 1 I 2

depends upon I 1 while I 3 and I 4 are independent I now say I allow I 2 to execute and then I

3 and I 4 to execute while I 2 will be still waiting for it right right. So, this is why I again say

this is out of order execution because I 3 executes even before I 2 is executed because I 2 is

waiting for I 1. So, I 3 and I 4 does not have any dependency it can start executing.

That is how I am getting super scalar processor that we have explained. Now the point is the

hardware basically says I 1 now you go and execute I 2 you wait I 3 now you can execute I 4

you can execute. So, what it means this hardware is responsible for allowing an instruction to

execute or stopping an instruction from not executing. So, the hardware does instruction

scheduling what do you mean by scheduling? Scheduling a class means this class will happen

at this point of time scheduling and instruction means this instruction will execute at this

point of time are you able to understand what I am saying. So, what is the hardware doing it

now schedules the instruction.

When it is scheduling the instruction when the process when it is a process when the program

is in execution it does the scheduling, that is why we call it as dynamic instruction scheduling

this entire process is called dynamic instruction scheduling, because this happens when the

program is in execution. The hardware sees five or six instructions coming now it analyses

the dependency between this instructions dependent instructions it makes them wait

independent instructions it start it allows to execute and all these things are done by the

hardware the compiler need not care anything about it and so, this type of an instruction

scheduling since it is done by the hardware at the time of execution this is called dynamic

instruction scheduling are you able to follow any doubts in this.

Now, the other aspect is that this is compiler is heaven compiler does not bother about the

architecture the other aspect is that if the compiler does the scheduling. So, compiler sees 10

it groups takes ten instructions it analyses whether there are dependencies if they have no

dependencies, then it allows it makes a packet and say now you go and execute right. If the

compiler actually does this type of scheduling then it is called static instruction scheduling.

So, there are some architectures which we call as VLIW very long instruction word very long

instruction word Itanium is one such example of a processor which supported VLIW where

static instruction scheduling is done.

In our case whatever we are going to see now this entire thing is done dynamically and for

example, MIPS embedded processor or arm embedded processor does have you know

dynamic instruction scheduling sorry for the spelling typo and we will learn a technique

called tomasulos technique; tomasulo is the name of the scientist who found it. So, we will do

this tomasulo technique of constructing an hardware which will do dynamic instruction

scheduling meaning it will be responsible for handling all the data hazards namely raw war

and WAW followed yes or no.

(Refer Slide Time: 21:55)

Before we proceed to this we will have a very very short introduction to static instruction

scheduling.

Static instruction scheduling is done by the compiler, that is why the word static is done when

the program is not in execution that is why the word static instruction scheduling. So, what

will the compiler see it will take a bunch? So, suppose I have K execution units not all the

execution units may be symmetric. So, let us go back to this slide I have K execution units

not every fellow can do integer addition there can be 4 or 5 who will do integer addition,

there can be some 4 or 5 which will do floating point, there can be some who is doing s I m d

instructions right now the compiler we will know what the architecture is it knows that there

are K instruction K units and each of this is capable of doing this, then it will now go if after

it actually comp it compiles and makes the machine language program.

Now it will go and look at this machine language and then it will find machine language

program and it will see if I could assemble K instructions such they are there is no data

dependency between them, and these K instruction should adhere to the K units. So, the first

instruction if the first unit is integer it should be an integer instruction; the second unit if it is

going to be like here right if the second unit is going to be a floating point unit it should be a

floating point instruction like that for every unit it will find if there is an instruction that could

be executed it will find and the K instructions that I am going to send at one shot none of

these instruction should be one dependent there should be no data dependency.

Say it will make one bundle like this; obviously, it cannot find a bundle where all it all

instructions are productive like I may not find a bundle where I have a floating point and an

integer instruction also. So, it may not be successful in finding a bundle with K instructions,

each matching with the corresponding execution unit and there is no data dependency it

becomes extremely complex are you able to follow right. So, what it does it takes say some R

units R less than K, R instructions it schedules for the remaining fellows he will put NOPS n

o p s. So, any instruction set architecture in the world we will have something called n o p no

operation right.

Even if you go into the Intel manual, you will find there is something called n o p no

operation. Why do you need such an instruction at all why do you need a nop this is one

example I will show you many more examples, but this is one example in the case of static

instruction scheduling if I do not find enough instruction to fill all the execution unit for those

units corresponding to those units I will put nop.

So, what is. So, finally, what is static instruction what is static instruction scheduling I make a

very long instruction word to accommodate K instructions, and if I do not get K instructions

that such that each instruction you know adhere to the word to the execution unit and adheres

to the execution unit on which it needs to execute and also that there is no data dependency if

I am not able to get those K instruction or one bundle of K instruction then I put it put NOPS.

Now as you see the hardware is not complex because the hardware is not going to the

dynamic instruction scheduling, hardware I just takes one bundle executes it and throws and

next bundle executes it and throws it.

So, the hardware becomes extremely simple, but the compiler the has a night mare not a very

big night mare, but it is it is indeed a night mare. So, that is one very important thing. So,

what happens is that many times I do not find K instructions in a bundle. So, I land up with

adding lot of nops. So, the size of the execution you uh the executable program the final

executable program actually becomes very fat. So, that is one major drawback of this static

instruction drawback of this static instruction scheduling. The second important draw of this

static instruction scheduling is the portability of the code from one architecture to another

architecture. Tomorrow if I put K plus 1 execution units or 2 K execution units then this one

this executable will not run on that. So, I have to go take back from the machine code again I

have do bundling again right. So, so the portability is going to be a major issue right and

many times what happens is that they use some software firmware emulator to handle this

portability issue.

I move from core which had earlier K execution unit to K plus 2 execution unit, then every

bundle that I have generated should have either 2 NOPS or it needs to be rearranged. So, I

cannot basically every time a new Itanium sorry a new VLAW architecture is announced even

in the same series I cannot go out and keep on compiling new versions and say for this you

use this version then it becomes commercially unviable.

So, there that was one major drawback in this static instruction scheduling; there were some

software firmware emulator solution which basically did not work that effectively today we

do not see many of these v l a VLAW machines. So, we will not put lot of time on trying to

see that architecture, but basically we will have at an introductory of this nature we will have

an introduction. Now there is something much more complex that happens in static

instruction scheduling and that is this.

(Refer Slide Time: 28:11)

This problem what I am going to describe now is called memory aliasing and this is

something which your static instruction scheduling cannot handle. Now what is happening

here let us carefully look into now I am trying to store a value of or store the value of or to on

to the address R 1 plus 20, and I am reading the value of R 4 plus 40 and storing it in l 3.

So, I am writing in to R 1 plus 20 and I am reading from R 4 plus 40. For some reason if R 1

plus 20 is equal to R 4 plus 40 note that this is your hazard and this hazard the compiler

cannot detect it why the compiler cannot detect because at the time of compilation it does not

know what is the value of R 1 and what is the value of R 4 correct this is going to be

dynamically determined. So, if I see a load and store load following a store it can potentially

be a read after write if those 2 addresses become the same this is called the memory aliasing

problem.

What the say let R 1 plus 20 be 100. So, hundred can be approved as R 1 plus 20 alias or 4

plus 40 both will give me 100, but at this I cannot find out at the time of compilation are you

getting this. So, since I cannot find out at the time of compilation if I see a load and store

typically like this what will happen the architecture has to schedule it one after another. So,

they cannot put it in the bundle I cannot put your load and store even though there may be no

connections at all see this is using some R 1 R 2 register this is using R 3 R 4 register, there is

absolutely no connection right as in the in the prime of a c v u, statically if I if I you know

look at these 2 instructions I do not find any connection. Dynamically they could land up

right if R 1 plus 20 equal to R 4 plus 40 which I can find out at the time of compilation.

So, when I have a load an store such that load follows store then better I put then in 2

different packs; that means, if there are lot of instruction that are dependent upon this store

and load those cannot be packed together here. So, load store essentially becomes sequential

is and that is very very important about static instruction scheduling this is a thorn in the flesh

and you will see lot of load and store in your program because ultimately you have to read

from the memory for every variable and write back to the memory. So, when you see lot of

load and store together this is not a by the static instruction schedule if I am going to do static

instruction scheduling this should happen one after another.

(Refer Slide Time: 31:57)

Now, what you will be covering in our thing is that dynamic instruction scheduling where in

the data hazards are handled by the hardware right they are not handled by the software. So,

their memory aliasing type of issues will not will all handled by hardware and that is why the

hardware becomes a little more complex.

Now there are 2 types of data hazards. So, we will have something called a raw hazard; the

raw hazard is basically solved using the operand forwarding technique operand forwarding

while the war and WAW hazard will be solved using something called register renaming

technique. So, these 2 techniques we will we have to implement it in hardware and show that

it is working correct. Now also understand this raw we will see that it is actually a

dependency, it is a true dependency while this war and WAW are not are virtual dependencies

or whatever you call it as named dependencies, you can even call as false dependencies we

will show you why.

So, the hardware that we have going to deal with into tomorrow’s class right is one that will

solve the of raw and war and WAW hazard completely we will spend 45 minutes to

understand this, for the raw we will be using something called an operand forwarding

technique while for the war and WAW we will be something called register renaming

technique. So, in computer literature of computer architecture there are 2 things one is true

dependency another is named dependency, in true dependency there is actually a dependency

and I cannot solve the true dependency problem by any means I have to wait right.

So, if there is a if the previous instruction is holding that data that I need I have to wait for it

to complete. So, that is why we call it as a true dependency we will elaborate that a little

more while the war and WAW are virtual dependencies if I go and go some jugglery, then

those these things will disappear your war and WAW can disappear will you something called

register renaming that need to do it, both these together we will cover in tomorrow’s class.

