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Let’s move towards solving of Constraint Propagation Problems or Constraint Satisfaction

Problems and this is going to be an interplay between two kinds of processes. One is search

which will  try to find values for variables and the other is propagation which will try to

restrict the values that variables can take.

Let’s focus  on the  propagation  part  today and we will  look at  the idea called  constraint

propagation which basically at the simplest level says that if a certain variable takes certain

values,  then  a  related  variable  can  take  only  some related  values.  We also  use  the  term

consistency enforcement. For this you need to revise the notion of consistency and a partial

solution. We had used the phrase “a’ is consistent if it satisfies all the constraints whose scope

is covered” essentially or whose scope is a subset of the scope of this partial solution or

instantiation a’ essentially.

If you remember we had tried to draw a small diagram where we said that we have x1, x2, x3,

x4, x5 and so on and let’s say xn and we have a partial solution, say (2, 1, 3, 6). We have

given values to x1, x2, x3 and x4 and then if there is any constraint whose scope lies within

that, the values must satisfy the constraint. x1 and x3 must satisfy constraint C1 and x2, x3

and x4 must satisfy constraint C2 which means (2, 3) must be a subset of the relation C1 and

(1,  3,  6)  must  be  a  subset  of  the  relation  C2.  Then  we  say  that  this  partial  solution  is

consistent.

The idea of constraint propagation is to allow a partial solution to be extended, so essentially

we are going to be interested in those partial solutions. Let’s say I have a partial solution with

four variables x1,  x2,  x3,  x4.  I  should be able to extend that partial  solution to the fifth

variable. So I must not work with an example partial solution where I can’t choose a value for

x5 because then I’m resorting more to search than to propagation essentially.



We have this notion of i-consistency –a partial solution of i-1 variables can be extended to i

variables. Now this is a more general statement than it looks like from the example that I

have written. In the example on the right, I’ve kind of assumed that the order in which you

extend the solution is x1, x2, x3, x4, x5. Now in practice we don’t have that constraint. We

don’t have that restriction. Nobody is saying that after finding values for x1, x2, x3 and x4

it’s x5 that you must find the value for. But typically, of course algorithms will work in a

deterministic manner so we’ll end up doing like that but the notion of i-consistency is more

general than that. In practice, of course our algorithms will be more restricted and therefore

we will assume that we are extending them in a predetermined order. So, after x4 I will do x5.

That’s not a part of the definition of i-consistency.

The simplest case is of one consistency which my definition says that at the very beginning if

I choose any variable, I’ll be able to give a value for that. Now you might ask as to why this

is the case. This may be required in situations where there are unary constraints or unary

relations which means there is a constraint only on the value of one variable essentially.

So, for example if you are doing a map colouring problem and let’s say you will colour the

map of India only in the three colours a, b and c, whereas the domain may have more than

these three colours. I have an additional constraint that I’ll only colour it white or something

like that. And then if my domain has red, blue and white then it’s not one consistent because I

cannot extend my solution to any value from red and blue. Anyway, we’ll come back to that

in a moment.

This is called node consistency and implementing node consistency essentially means that

you prune values which do not satisfy some constraint. So for example if some colour is

disallowed, you remove it from the domain of that variable. Anyways that’s a very simple

kind of a thing. What’s more interesting is two consistency and that’s what we’re going to

look at today. It’s also called arc consistency and it says that if I choose a value for one

variable then I should be able to choose a value for any second variable. If that is the case,

then we say that the network is arc consistent.

Why are we interested in this? Because if we have enforced two consistency on the network

then it means that you can give a value for the first variable and you’re sure that you will be

able to give a value for the second variable. You don’t have to backtrack at that stage. And

then of course you have one then two then three and so on, higher and higher orders of

consistency. So, five consistency means that four variables can be extended to five variables.



i consistency or n consistency would mean that if you have a partial solution of n-1 variables,

you will always find a value for the nth variable essentially. You can see that the higher the

level of consistency, the less the amount of backtracking you must do because essentially

consistency is saying that you will be able to find a value for the next variable.

(Refer Slide Time : 9:09)

Let’s look at arc consistency in a little bit more detail. We said that for a relation or an edge

R, Rxy is consistent, if variable x is, so we will use the short form AC here, if variable x is

AC with respect to variable y and vice versa.

To define this, we say that for every value a  Dx that we can choose, there exists a value b ϵ ϵ

Dy such that the pair (a, b)  Rxy. If this is the case then we say that the variable x is arcϵ

consistent with respect to the variable y. If y is also arc consistent with respect to x, then we

say that the relation Rxy is arc consistent and then finally we say that a network is AC if all

pairs of variables are AC.

So we have first defined consistency in one direction, then in other direction and then over all

edges. So you must not confuse with the fact that when I say all pairs, it’s equivalent to

saying all edges because if you are talking about a binary constraint network, if you don’t

have an edge between two variables or two nodes, it basically signifies the universal relation.

And when it’s a universal relation then of course you can choose any value from one variable

and any value from another variable essentially.



So to just look at an example, if we have X, Y and Z, and you have values for the variables as

shown in  the  diagram,  then  you can  see  that  in  this  example  at  this  stage  X is  not  arc

consistent with respect to Y because there is a value, the coloured element, which does not

have a corresponding value in Y but Y is arc consistent with respect to X.

If  we  think  of  Z  as  a  universal  relation  that  means  implicitly  everything  is  related  to

everything else. If you have not specified a constraint it means that you are allowing any

combination  and therefore  that  is  by  definition  arc  consistent.  So,  you can  see  that  this

network is not arc consistent. Y is arc consistent with respect to Z and Z is arc consistent with

respect to Y. So the edge YZ is arc consistent but the edge XY is not arc consistent because X

is not arc consistent with respect to Y.

Consistency enforcement will basically involve removing values form domains of variables

so that it becomes arc consistent so that, if these three values were called a, b and c, then a

search algorithm should not start with value X = c because then it will not find a consistent

value in Y. So, we want to avoid that kind of dead end in search and that’s the whole idea of

doing arc consistency.
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So how do we go around doing this? We start by making a variable arc consistent and that is

done by an algorithm which traditionally everybody calls as revise and one way of saying this

is that you’re revising x with respect to y, i.e., Revise((X), Y). It’s just a way of defining this

function or module or subprogram. I prefer to use this notation – Revise(Dx, Dy, Rxy). In



both the cases, it’s just a different notation. You’re trying to prune the domain of variable x

which is indicated here within brackets. The first notation is used in Rina Dechter’s book, the

second notation is used in my book but essentially the algorithms are still the same.

Revise is the core of the algorithm for doing arc consistency which is called AC-one. We will

see it shortly. The core of the algorithm is the module called revise and what revise does is

that it prunes the domain of x so that it has only consistent values with respect to y. So as you

can imagine this is a simple algorithm and we can write this as follows. For each a  Dx, ifϵ

there is no, writing it in Dechter’s style, in high level, b  Dy such that (a, b)  Rxy, thenϵ ϵ

delete a from Dx. It’s a very simple algorithm and we can illustrate it.

So supposing I have some constraints as shown, then if I make a call Revise(Dx, Dy, Rxy),

then this will delete c from Dx which basically means that this value will get deleted from the

domain and so new Dx will be {a, b, d} only.

One call to revise x with respect to y has deleted one value from the domain of x. Likewise if

I call revise y with respect to x then it will delete three values as you can see. Let the values

be {1, 2, 3, 4, 5}. So, revise y with respect to x will delete the values 2, 4 and 5 from here

essentially. And then the edge xy will become arc consistent.

What  is  the  complexity  of  revise?  In  the  worst  case,  what  will  you end  up doing?  For

checking that there is no such value, you may have to look at k values in the domain. In the

worst case what is the decision? x has k values and y has k values. So whenever we’re doing

complexity analysis we’ll assume that every variable has k values. In the worst case x has k

values and y has k values and let’s assume that it’s an empty relation which means there are

no consistent pairs allowed. That’s the worst case situation. What will you do? You look at

the first value for x, then you will look at all the k values for y and then you will remove that

value for x. Then you will look at the second value for x, look at all the k values for y and

remove that value. So, in the worst case you will look at k2 entries. So the complexity of

revise is O(k2).

So this is something we will always use whenever we talk about complexity - n variables and

k values. So our complexity will always be in terms of n variables and k values. Sometimes

we will use the notion of count of number of edges in the binary constraint network but not in

this example.



In the best case, for every value you look at, the first value you will look at on the other side

will be a related value. So you will only look at k values in the best case but generally we talk

about worst case complexity.

Another way of expressing this whole algorithm is to say that we’re doing the join operation.

So, we can express the whole algorithm in terms of one relational statement – Dx  Dx ∩ πx

(Rxy ∞ Dy) and then from that  you’re taking the values for x.  Whichever  values  in the

original  domain were there,  you’re keeping only those where the projection and the join

returns a value.
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Now let’s talk about making a network arc consistent. The first algorithm that we will see is

called AC-1. It’s a very commonly known algorithm and before we do that let us try to work

at an example. This example is very similar to what we have been looking at. Let’s say we

have 3 variables and let’s say we have 4 or 5 values in each domain. Let’s call these variables

X, Y and Z. 

What do I need to make this whole network arc consistent? Obviously, I want to revise X

with respect to Y. I want to revise Y with respect to X. And we will do this only for the

relations  which  are explicit.  So Rxy is  explicit  and Ryz is  explicit.  For  Rxz anything is

allowed. So we don’t need to revise there essentially. We need to revise Y with respect to Z

and Z with respect to Y.



So this we can write as follows that for each pair (xi, xj), that participates in a constraint,

which is equivalent to saying that there is an edge, we have to make two calls to revise. One

is Revise(Di, Dj) and the second one is Revise(Dj, Di). We will use the same relation Rij

because that basically contains both ways. So we’ll not go into the integrities of how we

represent this relation. Essentially we want to make two calls. So for each pair of variables

XY, we’ll  make  these  two  calls  and  for  YZ we  will  make  these  two  calls  because  by

definition we have to first make each variable arc consistent with respect to the other variable

in both directions and then we have to do it for all possible pairs of variables.

The question is if I do this, whatever I’ve written on the right hand side as an algorithm, that

for each pair I call revise, call X with respect to Y, Y with respect to X, Y with respect to Z

and Z with respect to Y, will I get a network which is arc consistent?

It turns out that in this case it did become arc consistent but you can see that when we delete

some values, that you may be disrupting the consistency of some other variable. In the next

class I will choose an example where this doesn’t really happen and then we will see that we

need to put revise in a loop. And the condition for that is till no domain changes any further.

I’ll take up another example in the next class and we’ll just try to see that just one round of

revisions or one round of revise calls is not enough. We have to make multiple rounds. So

we’ll make a case for this and then we’ll talk about efficiency in the next class.
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