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Let’s continue looking at constraint networks. In the last class we talked about the fact that

networks express solutions. What when two different networks express the same solution?

Then we call them equivalent. So we say that R and R’ express the same solution relation ρ. x

is the set of variables over which the relation is defined. So if two networks have the same set

of solutions which we call as expressing the solutions, then we say that the two networks are

equivalent.

Let’s look at a couple of examples. We’ll look at map colouring. You remember the notion of

a constraint graph. A constraint graph is a graph in which the variables are the nodes and

there is an edge between two nodes if the two variables participate in some constraint. The

constraint doesn’t have to be a binary constraint. It can be a higher order constraint as we saw

in the crossword puzzle example but if they participate in a constraint then we draw an edge

between them. In a map colouring problem it is straight forward because the map colouring

problem is naturally expressed as a binary constraint satisfaction problem because there are

two neighbouring countries which are kind of related or regions which are kind of related.

We can represent a  constraint  network by the constraint  graph. So here is  one constraint

graph. There are three variables x, y and z and each of them can take one of the two colours

red or blue. r stands for red and b stands for blue. So it’s a two colouring problem and the

relation is that you cannot assign the same colours to them. So it’s basically the not equal to

relation.

So just as a quick recap, how would you express the relation? Here you would express it by

saying Rxy which is the relation between x and y is {<r,b>, <b,r>}. And this is also Ryz.

Basically if you give r to one variable then you must give b to the other variable and you can

assign them in any order.

What is the solution to this problem? There are two solutions as you can see – r, b, r for x, y

and z respectively in this  order or b,  r, b. So this  is a constraint network.  Let’s call  this



network R and it has two binary constraints between x y and y z and it has a set of solutions

that is available to you.

Now look at this other network with the same set of variables and the same domains but it is

a little bit different. There is a not equal to relation between y and z and an equal to relation

between x and z. You will see that if you were to solve this, it has the same set of solutions.

So you can give a value of r to let’s say variable x and it forces you to give a value of r to the

variable z because there is an equality relation here as opposed to the inequality relation and

then you can choose the other value for the variable y. So this has the same solution as the

first network. Both the networks have the same solution so they are both equivalent.

Now one observation that you should make is that if you look at the first network, we don’t

have an edge between x and z. What does that mean if there is no edge? No edge basically

means  a  universal  relation  which  means  we  are  not  bothered  to  specify  which  two

combinations are allowed. So here for example there is an edge which is missing and because

we have not specified in our CSP. We have said there are only two relations in the second

network, there is a relation between x and z and there is a relation between y and z. We have

not said anything about the relation between x and y which means in the statement of the

problem it’s a universal relation. You must treat it like a universal relation.

So the first thing is that we can have different networks which are equivalent which means

they express the same solution. Then secondly we can make inferences at some point. So

which  graph  is  better?  The  one  which  has  more  constraints  or  the  one  which  has  less

constraints? That’s an issue that we will look at as we go along but imagine a simple search

algorithm which looks at variables in a given order. For example, it looks at variables in the

order x and y and z. Look at the second network here at the bottom of the diagram. You can

give a value to x. So some search algorithm will say x = r. Now because there is nothing

specified between x and y you can choose any value for y. So you can say for example x = r

and y = r. Nothing stops you from doing that. Nothing stops you meaning we don’t have a

constraint between x and y.

So we have in effect a universal relation which means all combinations are allowed so you

can choose any combination. But you can see that that is not a good thing because once you

choose x = r and y = r, you cannot choose a value for z because z must be equal to x and at

the same time it must be different from y but by the time we come to z we have already made

the mistake of giving y the value of r. Whereas if we had the constraint between x and y then



we would not have made the mistake because we would have allowed to give only consistent

values to y.

So we can infer such missing constraints  and the inference can be done by a process of

composition. So those of you who have not looked at sets and relations and functions and that

kind of basic discrete maths, I would suggest that you go and revise that because we use it

once in a while. Also it helps if you are familiar with the notation of relational algebra which

you must have studied if you have done a database course. So we’ll use alternate notions at

different times and we will keep using them so you must kind of revise those things.

So we can infer a new relation.  So let’s look at the first example here where we have a

relation between x y and y z but we don’t have a relation between x z. So we can infer a

relation Rxz. It is a set of pairs <a,b> such that a ∈  domain of x and b ∈  domain of z

and ∃  a c where c ∈  domain of a third variable y, Dy, and the pair <a,c> ∈  relation

Rxy and the pair <c,b> ∈  relation Ryz. This is a generic definition. It just so happens that

x, y and z are the variables that I’ve used here. So you can use it as an example but in general

you can infer any relation between x z.

So if you have two relations Rxy and Ryz available to you as in the example on the top left

then you can infer a third relation by simply doing the composition of those two relations. We

say that an element a in the domain of x is related to an element b in the domain of z if there

exists some element c which exists in the domain of y and <a,c> belongs to relation Rxy and

<c,b> belongs to relation Ryz. In other words, if you’re looking at it as a graph then if there is

a path from x to y and from y to z then you can find a path from x to z.

You can also express this in the relational algebra terms. So we can say Rxz is equal to the

composition of Rxy and Ryz. π stands for projection, over the variables x and z. You basically

take only those values which correspond to the variables that you are talking about. In this

case you are talking of variables x and z and you’re projecting the join between Rxy and Ryz.

This is a natural join.

So joining the two relations Rxy and Ryz will basically give you all triples which are related

to each other and from those triples you can extract or project the pair between x and z. So we

have inferred a new relation essentially.

For the above example, x can take the value r and y can take the value b. And since y can take

the value b, z can take the value r then we can say that whenever x can take the value of r, z



can take the value of r. So this relation that is missing in the top diagram can be inferred. So

we can infer new relations essentially.

(Refer Slide Time 13:32)

We just saw the notion of equivalent networks. We have a notion of tighter than. We want to

work towards the notion of a minimal network. And by minimal we’ll also mean tightest.

Let’s define what that means.

We say that a network R, so you must get used to this idea; whenever you say network we are

talking about a constraint satisfaction problem, we are just using this notation; is tighter than

a network R’ if for each relation Ri, Ri ⊆  Ri’ essentially.

So let me take the same example as above. We have x, y and z and we do the composition

operation to infer a new relation which gives us a new relation. Now we have three relations

here, two are not equal to as before, one is equal to, and everything else is same. So there are

two networks. They are over the same domains and same variables. One of them has two

relations, Rxy and Ryz. The other one has an inferred relation – Rxy and Ryz and also Ryz.

Now you can see that these two networks are equivalent to each other in the sense that they

express the same set of solutions. We will call the first network R’ and the second network R,

then we can see that R is tighter than R’. What does this mean? This means that Rxy is a

subset of Rxy’, Ryz is a subset of Ryz’ and Rxz is a subset of Rxz’.



So you must remember that Rxz’ is a universal relation, which means you are allowed all

combinations. You’re allowed <r,r>, <r,b>, <b,r> and <b,b>. Whereas Rxz, the relation that

we inferred is that they must have the same values – <r,r> or <b,b>. So we have this notion of

one network being tighter than another network. This is for each relation Ri. However, it’s not

necessary that given two relations, one of them is tighter than the other.

Supposing you are given a set of k networks R1, R2, R3, … , Rk and let all of them express a

relation  ρ,  which  means  they  are  all  equivalent.  The  set  of  solutions  for  each  of  these

networks is  ρ . Then we say the minimal network M(ρ) is the tightest possible network.

How do we get this?

We use the intersection operation. R ∩ R’ = R’’. This is done pair-wise for each relation. So if

you have two networks and if you do a pair wise intersection of all the relations you get a

new network which is called the intersection of R and R’ which is in this case R’. The result

is always tighter. It is tighter than both R and R’. So if you take an intersection of any two

networks you always have a tighter network.

And  then  we  can  see  that  the  minimal  network  M  of  rho  can  simply  be  taken  as  an

intersection over i going from one to in this example, of Ri. So the intersection relation, the

intersection of networks or the minimal network is a network which has the fewest number of

tuples inside it.

 In this example on the top where there were two relations Rxy and Ryz, implicitly there was

a tuple xz but it said that all four combinations were allowed. In the bottom network which

has three relations the relation Rxz has only two tuples where as in the top network implicitly

it had four tuples.
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We’ll come to another way of arriving at the notion of minimal networks for binary constraint

networks but before that I want to raise a question. Let there be n variables, each of domain

size k. The question that I want to ask is, given a set of variables can we express every

relation as a BCN?

We said  at  some  point  that  binary  constraint  networks  are  easier  to  handle  and  lot  of

algorithms have been developed. The question that we want to ask is that can you express

some given relation ρ as a binary constraint network?

It’s basically a counting argument. And the answer to this is no. The answer was given by

Montanari in 1974.

If we have n variables and each with k values you can choose the first value in k ways. You

can choose a value for the second variable in k ways. So x1 has k ways of choosing a value.

x2 has also k ways of choosing a value. And therefore there are kn ways of choosing an n

tuple or kn combinations. Now which of them you allow and which of them you don’t allow

determines the relation that you are talking about. The power set of this set is the number of

relations you have which is 2kn ( 2 to the power k to the power n ).

Whereas  if  we talk  about  binary  constraint  networks,  each  relation  can  get  values  in  k2

number  of  ways because there  are  two variables.  You can choose the  value  for  the first

variable in k ways and the value for the second variable in k ways. So you can choose them in

k2 ways. And there are n2 relations or n2 pairs of variables.

In the first example there is only one set of variables. All n variables you have to count at the

same time. In the case of binary constraint networks there are n2 pairs of variables. And each



pair of variable can get a value in k2 ways. So the number of relations or the number of

distinct  binary constraint networks is  2k2n2 essentially. And you can see that  this  is  much

smaller. 2kn ( 2 to the power k to the power n ) >> 2k2n2.

So if we are given n variables, each with k possible values, and you’re interested in some

relation ρ on those n variables then very few of the possible relations that you want to express

can be expressed using binary constraint networks. So the number of relations that you can

choose from is much much larger than the number of binary constraint networks that you can

construct.

So that’s of course a kind of a hindrance that  you can’t  solve all  problems using binary

constraint networks but we will try to look at this from a different perspective and we say that

can we get an approximation of a relation using a binary constraint network and that will lead

us to the idea of projection networks which we will look at in the next class and then we will

proceed from there. So you must be aware that binary constraint networks are nice to work

with but you can’t express every relation using binary constraint networks.

Now you might remember we looked at the crossword puzzle where there were 13 letters that

you had to  fill  in  the  example that  we saw in one of  the  earlier  classes  and there were

relations between the letters. So the first letter, first word for example had five letters and the

relation was between x1, x2, x3, x4, x5 where for example you can use the word sheep or any

five  letter  word.  And  then  we  had  a  constraint  network  which  was  not  binary  because

relations were between the number of letters making up a word.

Then we saw that corresponding to every such problem, there is a dual network or there is a

dual constraint graph which is made up by taking the variables as the scopes of the original

constraint  graph  and  the  relations  if  they  shared  a  variable.  We saw in  the  case  of  the

crossword puzzle that we can always have a dual and the dual was always binary. So is there

a  contradiction  here? We said that  a  crossword puzzle  can be  represented  like a  general

network  but  the  same  crossword  puzzle  can  also  be  represented  as  a  binary  constraint

network.

If you think carefully about this, it is not a contradiction because the number of variables is

different.  In  the  first  or  the  primary  constraint  graph that  we constructed  there  were  13

variables and each had domain sizes of 26 which means you could put any of those 26 letters.

Whereas  in  the  second  formulation,  there  were  only  6  variables  because  the  crossword

allowed 6 words to be fit in and for each word there was a variable and then the domain sizes



were different because the number of words that your lexicon allows would determine the

domain size. So even though the problem was same, the formulation was different. One had

13 variables, the other had 6 variables and the domain sizes were also different.

So the fact  that  you could have a  binary constraint  network for  every crossword puzzle

doesn’t mean that Montanari was wrong. Montanari is saying that if you have n variables and

each is of size k then there is only a small subset of relations that you can express using

binary  constraint  networks  but  for  other  relations  we  have  the  notion  of  approximate

networks or projection networks.
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