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In  the  last  class  we  started  looking  at  this  Gaschnig's
backjumping algorithm. And we saw that the key feature of this
algorithm was a select value function, which when it is trying to
find a value for this ith variable xi, keeps track of the partial
solution which was inconsistent with this  ith variable. And then
essentially it needs to know what is the longest partial solution
that is inconsistent, starting to construct it from x1, x2 up to xi

so on. And then it can identify the culprit variable, by keeping
track of this longest variable. And we saw in a small example with
this n queen’s problem how when in this example, when the sixth
queen we were trying to find the value we could figure out that
the jump back should happen to Queen 4 and not to Queen 5, because
the latest value for this queen which is latest6 its value was 4
and we could jump back to 4. So, let us formalize this into this
algorithm.  So,  the  algorithm  is  a  slight  variation  on  the
backtracking algorithm that we have done. The basic idea is still
the same, that you keep moving forward to the next variable trying
to get a value for it, it is except that when you do not find a
value you jump back to something. And what you jump back to is
determined  by  the  select  value  function  essentially.  So,
everything else is similar, you start with i = 1 you make a copy
of the ith domain and you say that the latest value is 0. And then
like before while i is between 1 and n, you do the following: you
instantiate  xi to a value that you get from a function which we
will now call as select-value-GBJ, which is a acronym we will use
for this algorithm Gaschnig's backjumping and as before if  xi =
null, then we will need to backtrack. But, here we will backtrack
to... instead of saying i = i - 1 you will say i = latesti and that
tells us for example queen 6 the latest6 was 4 and we could jump
back to Queen 4. Otherwise, we progress forward. Rest is similar,
we make a copy, and we set the latest value to zero. And then, if
i = 0 return inconsistent else return... I will just write it as
else return the solution. which is basically the set of values x1

is equal to this value x2 is equal to this value and so on and so
forth. Let us write this function here. So, again like in all our
select value functions while the domain of Di

' ≠ {} we select some
value and remove it from there. And now we want to test whether
this value is consistent with the partial solution that we have
for the i - 1 variables before that. Now instead of just testing
the partial solution ai-1, we will incrementally look at larger and
larger portions of i - 1. So, with basically we say that we will
start with by setting  k = 1, and while we are still looking at
partial solutions remember that when you reach  i then we have
already come to the current variable and consistent. Somewhere we
should  say  consistent,  so  we  will  start  by  looking  at...  so



remember that we have this we have this partial solution that we
have ai-1 and so we set k = 1. So we initially point k = 1 and we
look at only this part of the partial solution then we will look
at  a  slightly  longer  partial  solutions  and  slightly  longer
solution and so on essentially. If this is a part that we have
written earlier, remember that when we enter this module or this
subprogram, latesti was instantiated to 0 essentially. But now of
course once we move to the first variable, we will set it to 1,
and  then  as  we  move  this  k,  so  this  k  will  be  incremented
gradually and then we will keep incrementing it like a ratchet
mechanism. If k > latesti then latesti will get the value k. So, as
k moves forward we will keep incrementing latesti. Remember we want
to find the maximum inconsistent partial solution essentially so
that  we  know  where  to  jump  back  to  essentially.  And  if  not
consistent, remember that when we write this in upper case it's a
function which checks the consistency of this ak with xi = a. a is
the value that we are investigating. Then you simply say so this
is a variable, and you set it to false so you can see what is
happening here, we started with k = 1 then we go to k = 2. Look at
incrementally  larger  and  larger  partial  solutions  that  we  have
from for the previous variables. And stop at the point where it
becomes inconsistent. At that point the latesti variable would have
got incremented to wherever we reached essentially. And of course
if if it is not consistent then we go on and look for the next
value essentially. So, if not consistent we just say consistent =
false and then because while has a consistent check, it will exit
from the loop else it will look at a larger part of the partial
solution. So, essentially we look at longer and longer prefixes,
if you want to call it of the partial solution. So this is one
part of the while loop, and how will you exit from this while
loop, you will either exit when k = i, which means it is no longer
smaller than  i, which means if that you have found a consistent
value or if consistent has been set to be false, which will happen
if the partial solution is not consistent with this value  a for
this Di and at that point you have already incremented latesti to
the maximum that you could reach essentially. Now, in the next
cycle it will go back to the next cycle which means it will take
the next value from the domain of this variable and try the whole
thing  all over  again. It  will again  set  k =  1 and then  keep
incrementing till it becomes inconsistent and at that point may be
latesti would have become a new value, new larger value. So over
all these sequence of while loops, the latesti will always maintain
the maximum value that we have essentially. So, if at the end of
this while loop, if this is true, if consistent, which means that
we have found a value, for we have found that this value a that we
were looking at is consistent so just return that value  a, else
return null. will assume that this  latesti variable is a global
variable which will be seen by the calling algorithm. So if you
return null then that xi would have got this latest value, and this
algorithm will simply jump back to whatever is the index stored in
the  latest  value  which  is  the  index  of  the  culprit  variable
essentially. So like I said earlier, there are two cases that you
must consider. One case is when you do not find a value for this



variable xi. At that point you jump back to the latest once. On the
other hand if you do find a value for this variable xi in one of
the while loops inside which means for one of the values for this
from this domain Di, then you will return that value a and latesti

would have been set to  xi-1. So, that is something that you must
think about, because at the moment when you find the value of a...
by the time you find the value by the time you exit this while
loop, and consistent has not changed that means k would have gone
up to  i - 1 essentially. So, that is only place where you can
exit... this this internal while loop essentially. So, maybe I
should make a note here, here k = i - 1. If you are returning a
value of  a, or rather,  latesti, and we have said that this is a
global variable essentially. So if you find a value for the  ith

variable, then you will not have anything to jump back to. You can
only  jump  back  to  the  previous  variable  because  that  is  what
latesti stores essentially. But if you do not find a value ,then
this latesti would be somewhere higher up as we saw in the example
that  we  were  trying  to  see...  in  this  here.  So,  this  is  the
maximum that this arrows have reached forward essentially. And you
know that you can jump back from this to this and not any of these
intermediate variables essentially. So, this is the variable that
you should jump back to. But once we jump back to an internal dead
end for example in this six Queens problem you jump back from
Queen 6 to Queen 4, and the Queen 4 turned out to be an internal
dead end, but its latest value is 3 and therefore you can only
backtrack one step back essentially. So that is the problem with
in some sense a problem with Gaschnig's back jumping algorithm is
that it can jump back from leaf dead ends, but it cannot jump back
from internal dead ends, because the latest value is only the
previous variable essentially. 

The next algorithm we want to look at and we just start looking at
it informally today and then we will move to the formal algorithm
essentially,  is  called  Graph  back  jumping,  or  Graph-based  back
jumping. The basic idea behind graph based backjumping, is what we
started with when we started looking at the notion of back jumping
with the example that we saw in this map coloring example. In this
example we saw that when you cannot find a value for  x6 in this
case, then it makes sense to jump back to one of its ancestors
which is related to x6 which means either x1 or x2. And if you think
about this a little bit you will see that x1 would not be safe but
x2 would be safe in the general case so you should jump back to the
latest ancestor or what we will call as a parent in this case, and
a parent is a connected node. Remember we already have defined the
notion of parents when we talked about minimum width ordering, and
so on and that is the notion we will carry forward here. So let me
look at a sample graph, and discuss some of the issues that we
would be considering. So, let us say that this is a given ordering
for a graph:  x1, x2, x3, x4, x5, x6. So, one feature about graph-
based backjumping is that it only looks at the topology of the
graph.  It  is  not  concerned  with  values  inside  the  domains
essentially. So, it simply says jump back to the parent that is
the simplest notion for leaf dead ends we jump back to the parent.



But  that  parent  may  or  may  not  be  conflicting  with  that
essentially. So, it is kind of extra conservative in that sense
essentially. So if this is a graph that we have x1 is connected to
x2 and x2 is connected to x6 and x1 is connected to x3. So I am just
taking this example from Dechter's book. Okay so let us say this
is the constraint graph for whatever the constraint satisfaction
problem that we are solving and this is the order. So, if you
remember the notion of a parent is the latest connected variable
in the constraint graph. So, the parent of x2 is x1 the parent of x3

is also x1 the parent of x4 is also x1, the parent of x6 is x5 and so
on and so forth. So, we have this notion of parents essentially.
And let us say we are doing this backtracking algorithm so you are
trying a value for x1 then trying a value for x2 and x3 and x4 and x5

and so on. So, the first thing we want to do is for a leaf dead
end, jump back to a parent. So, let us look at some examples here.
If x3, then jump to, remember I am talking of leaf dead ends here,
x1.  Because the reason why you cannot find a value for  x3, so
remember that when when if x3 is a leaf dead end, I must emphasize
this, we are talking about leaf dead ends here. If  x3 is a leaf
dead end, it means that we found a value for x1 and x2 but we are
not able to find a value for  x3. Why are we not able to find a
value for x3, because it is violating some constraint and what is
the constraint it can violate, the only constraint it can violate
is which involves x1. So, look for a new value for x1 essentially.
So, you can jump back to x1 essentially. Then if x5 then jump to x4.
Now of course x5 is kind of unique, it has only one ancestor. In
some sense it's a it's a misleading kind of a case but we should
first  go  through  this  and  then  realize  what's  happening
essentially. And then in fact that ancestor is the parent which is
x4 essentially. Now because of this, and because if it has jumped
to  x4, if  x4 is a dead end, what does this mean that we found a
value for x1 then x2 then x3 and x4 and then x5 was a leaf dead end,
and we jump back to  x4 and we find that there is no other value
left for x4. So, it is a dead end and it is an internal dead end.
Then in this case, you can jump back to x1. That is fine. There is
nothing which is wrong here essentially. So this is two cases that
we have seen. This case number 3 is more complicated, let me write
it here. So if okay so I used this thing twice. If x7 is leaf dead
end, then jump to parent, to  x5. Now if this is a dead end then
jump  to  x4 but  if  this  is  a  dead  end,  is  a  question  mark
essentially. So, what is happening here, we find that x7 is a dead
end, and then we jump back to x5 then we find this x5 is a dead end
and you jump back to x4 okay. So I am trying to distinguish between
these two cases where x5 was a dead end. In the first case which is
actually the second case that we discussed here, x5 was a leaf dead
end. When x5 was a leaf dead end we could jump back to x4 and then
we made a claim that we could jump  back from x4 to x1, if x4 was an
internal dead end. That was one case. The second case or the third
case that we are looking at is when x7 is a leaf dead end. When x7

is the leaf dead end and we jump back to x5 because x5 is a parent
of x7 that is fine. And we find that x5 is a leaf dead end. Now, we
jump back to x4 because x4 is a parent of x5, it is fine but what if
x4 is also a, is an internal dead end essentially. So, in the



earlier case when x5 was a leaf dead end, we could jump back to x4

and then to x1, but when x7 is a leaf dead end, we can jump back to
x5 which becomes an internal dead end now, and then to x4 which is
fine. But where do we jump from x4. Is it okay to jump to x1 is a
question like before essentially. And the answer to that is no,
you must jump to x3, and why is that? It is a lower level, you are
backtracking, but why x3, why not x2? Another parent of... well not
apparent it is an ancestor of  x7 essentially, because it is  an
ancestor of  x7. And why is that important? You might miss out a
solution. Because the inconsistency that you saw at x7 could have
been caused by x3 essentially. You know that the value that we were
looking at could have been such that, supposing this was a map
coloring algorithm, and the, and we could not find a value for x7

it could be because if you have a different value for x3 we might
have found a value for  x4. And which means that when we want to
jump back, so just let us go back over this process. We found x7

was a leaf dead end. You could jump back to x5 that was fine, we
could jump back to x4 that was also fine. But we from x4 we have to
jump to someone some node which is not a parent of x4. But it is a
ancestor of x7 essentially. So, we have to somehow formalize this
notion essentially, as to what should we jump back to. And that is
an  idea  that  we  will  pursue  in  the  next  class  but  informally
speaking the idea is this. That when you are retreating to an
internal dead end, then you must look at not only its ancestors
but also the ancestors of the node from where you are retreating
essentially. So, if you have come to x4 as a internal dead end. You
have come to x4 from x5 so you must look at the ancestors of x5. But
in this example  x5 has only  x4 as an ancestor, so it does not
matter. But also ancestors of x3 and then ancestor of x3 includes x
sorry  ancestor  of  x7 includes  x3. So  x3 is  later  than  x1

essentially. So, in some sense we will see and we will define this
notion in the next class that x3 is the induced parent of x4. When
retreating from, so we do not want to jump back to a parent only
but to a notion of an induced parent that we will try to define in
the next class. So you were saying something. If x4 and x5 were not
connected then in the second case where x5 was the leaf dead end,
we would jump to  x3. So that is not a, that would not cause a
problem essentially. See if the only change you are making is that
your instead of connecting x4 and x5, you're connecting x3 and x4, x3

and x5. Then by the same definition of the induced parent we will
discover that  x3 is an induced parent of  x4. So, basically the
notion of an induced parent is based on the notion of induced
ancestors which means  your own ancestors plus the ancestors of
the nodes that you are retreating from, and this whole set of
ancestors from that the latest node is going to be the induced
parents. So, you collect all the ancestors into a set, called the
induced ancestor set and from that the latest is a parent. So,
which kind of extends the notion of a parent. The parent is the
latest ancestor that you are connected to. An induced parent is a
latest node that is an ancestor of either the one that you are
currently, or the one that you have retreated from essentially.
And this notion of induced ancestor, induced parent is only for
internal dead ends, and it is motivated to define what is the safe



jump. So like he said if you jump back from  x4 to  x1 you might
actually miss out on a solution because changing x3 would have been
the answer essentially. So we will, we have run out of time so but
we will formalize this notion. We will start from here in the next
class and we will formalize the notion of induced parents, and
once we do that the algorithm is straightforward essentially.


