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Okay, so we have started looking at algorithms which jump back
intelligently  when  they  reach  their  dead-ends.  And  we  want  to
start by looking at one of the most famous algorithms in this,
which is called Gaschnig's backjumping, and as you can guess this
is  due  to  the  name  of  the  person  Gaschnig  who  devised  this
algorithm.  Okay,  so  what   Gaschnig's  backjumping  does:  it
maintains information of conflict sets, and it has a notion of a
culprit variable. Okay? And so let me illustrate that with an
example here. So if you are looking at trying to find a value for
this xi, and you have not been able to find any value, in the sense
that all these crosses they represent the fact that you could not
find each of these values as a value for  xi, and you have found
values of previous variables, and so on. And let us say that the
partial solution that we have constructed is something like this,
so  this  is  ai-1 essentially.  Then  the  definition  of  a  culprit
variable is: let  ai-1 is equal to  (a1, a2, .. ai-1) be a leaf dead
end. So, sometimes we call this a leaf dead end state, because in
the space of partial assignments this is a state essentially. So
the  culprit  index  j relative  to  ai-1.  So,  observe  that  this
observation that we are making. So, what are we trying to do, we
are trying to decide where to jump back from this variable xi which
we could not find a value for  xi and we are trying to jump back
from xi essentially. And we are trying to identify as to which is
the variable which I need to go back and change essentially. And
we call that variable as a culprit variable. So essentially we are
looking for the index of that culprit variable as to what is the j
such that if I go back and change  xj, I may get a new solution
essentially. Or in other words, if I jump back to anything later
than  j it is not going to help me essentially. So in that sense
what is the maximum safe jump that I can make essentially. And
that will be defined by this notion of a culprit variable. It is
defined as b = min {j≤i-1 | aj conflicts with xi}, and let's call
this  index  b  okay.  So,  let  me  again  illustrate  this.  So  this
notion that we are looking for the smallest previous variable, the
earliest previous variable such that it still conflicts with that
essentially. So, essentially what we are saying is that, if you
look at this for example, then you can see that this whole this
entire partial instantiation, we know is a conflict because we
could not find a variable for  xi essentially. But if we exclude
this  last  one,  and  if  you  look  at  only  the  previous  one
essentially. So if you just keep doing that, if we exclude this
and if we exclude this and so on. And if you can exclude this one,
so the red ones are what we are excluding and the remaining part



is still a conflict essentially, okay. Now what these red circles
indicate here are that you can you can avoid that, you can remove
that part of the partial instantiation and still the remaining
part is conflict essentially. So, of course including all these
are also culprits, but excluding these also culprits essentially.
So, in some sense then what you cannot exclude is the culprit.
Which means, that if I had excluded the culprit variable, let us
call it xb,is that if I had excluded the culprit variable, then xb-1

is consistent with xi. Which means that although xb-1, I can try a
different value or if I just take that ab-1, is consistent with xi

that if I just take those remaining values in this example x1 and x2

then I will be able to find a value for x1, xi essentially. So xb is
a  minimal  values  amongst  all  these  values  which  is  still  not
consistent  with  that  essentially  and  essentially  what  the
algorithm Gaschnig's backjumping says is that you must jump back
to this culprit variable essentially. And because supposing a jump
back to here, is not maximal. So this is safe but not maximal. It
is safe because I am not going to miss out to any solutions if I
jump  to  this,  but  it  is  not  maximal  because  I  can  jump  back
further essentially. And if I jump back to this, it is not safe.
So the culprit variable is safe and maximal to jump back. If you
can identify the culprit variable then we know where to jump back
to essentially. And identifying the culprit variable may not be
such  a  hard  task.  In  fact,  it  can  be  done  while  you're
constructing the while you are trying to find a value for the xi+

variable  essentially.  So  let  me  illustrate  that  with  the  same
example.

Identifying the culprit variable. Now remember that we have this
function  called  select-value  function,  in  backtracking  which
basically takes a partial intantiation and finds the value for the
next variable essentially. Now just try to see what this select
value function does. In this case we will call it select value GBJ
which stands for Gaschnig's backjumping. So, let me draw that same
diagram again. You are looking at the  xi variable and you are
essentially trying to see if any of these values is going to work
essentially. And what you have is this existing ai-1 essentially and
you want to extend this  ai-1 to some value from this domain of xi

essentially. So you will try for each value one by one. So the way
that  this  select-value  GBJ will  work  is  that  it  will  try  out
increasing, so instead of instead of checking  ai-1 and xi = a for
consistency.  You  incrementally  try  larger  values  or  larger
instantiations. And the idea here is to try and identify at which
point  the  partial  instantiation  that  we  have  has  become
inconsistent essentially. And this will of course be useful when
we cannot find a value essentially. So, this incremental search
let me denote by a red line here. So let's say we are looking for
the first value so you try this the first value in the domain of xi

and you incrementally, so let us say this this arrow represents
the fact that you could come up to this point, when it became
inconsistent okay. So, that means you saw essentially this much,
this thing and here it became inconsistent. The partial solution
that I have shown in this red shaded area became inconsistent with



this value essentially. So what this algorithm does is mark this.
So if this is  k then you say  latesti is key. We will maintain a
variable called latesti which will identify the culprit variable.
But, we don't know yet of course, we don't even know whether there
is a culprit or whether we will find the solution or not. When we
look at the first value for xi we look at larger and larger of this
partial  instantiation  till  the  point  where  it  becomes
inconsistent. And then we say okay keep that k in mind essentially
so remember that k essentially. And then we do the same thing for
the others so the second one may become inconsistent here, then
the third one way become inconsistent here and then the forth one
may go up to let's say here and then the fifth one may go up to
here and the sixth one is here. So what is happening we are doing
all this search we are trying out this values one by one and we
find that that this doesn't work, this doesn't work, this doesn't
work, this doesn't work, nothing works. And at for each of these
attempts we have marked where it became first, it first became
inconsistent essentially and then we keep incrementing this. So,
inside the loop, if k is greater than latesti so let me call this
one as latest1. So, for each value that we are trying we look at
larger and larger part of this partial instantiation, and if we
find a larger one which is inconsistent then we just mark that as
the latesti. So, essentially what will happen at the end of this is
that this latesti will come to the one which is the latest amongst
all these arrows, or longest if you want to think of them in these
arrows. And essentially you know that that is a variable that you
need to jump back to essentially. So, if you just think about this
a little bit, that is the basic idea behind Gaschnig's backjumping
essentially. 

So, let me try to illustrate that before we write the algorithm.
So, we will call this  GBJ, Gaschnig's backjumping an example. I
don't know whether we need to write the algorithm. But, we can at
least see this. So, let us let us go back to one of our favorite
examples, which is the N Queens example and let us look at the six
Queens example. So, these are the Queens: 1, 2, 3, 4, 5, 6 and
this is the value of latest for each Queen that I will find. so
initially of course I put this Queen and its value will be 0
because I do not need to jump back at all from here. Now one
observation  is  that  if  we  find,  and  we  have  not  written  the
algorithm yet but we will do that if we find a value for xi, then
latesti = i-1 because  you  would  have  incremented  that  partial
instantiation and eventually come up to  i-1 and we would have
found  the  value  for  xi. So,  if  we  find  a  value  for  the  next
variable then the  latesti would be the just the previous index
essentially. Which means that if I find a value for the second
Queen which is here, latesti would be 1. I mean it will just get
incremented to 1 and then I will find a value for the third Queen
and the latesti would be 2 and then I would find the place for the
fourth Queen and the latesti would be three and then I will be able
to find the value for the fifth queen here the latesti would be 4.
So,  that  is  because  we  are  finding  these  values  and  and  the
process of finding the value the latesti would have got incremented



to the previous variable. But, we aren't able to find a value for
this last Queen essentially. So, what is the which is earliest
conflict  which  is  happening  here.  For  this  it  is  1  it  is
conflicting with Queen 1. For this it is conflicting with Queen 4.
So, what do I mean by this, I mean for this value of of Queen six
the first value is conflicting with Queen 1, the second value is
conflicting  with  Queen  4,  the  third  value  is  conflicting  with
Queen 2 that is our earliest place. So supposing I were I was
trying to find the value whether I can place the Queen here. So I
would see is it conflicting with 1 then is it conflicting with 1
and 2 and at that point I would have discovered that yes it is
conflicting with 1 and 2 and therefore the value for this is 2
here.  Likewise  for  this  one  the  value  would  be  the  earliest
conflicting is with 3 because you know it is conflicting with this
here. For this one the earliest conflicting would be 2, sorry 3. I
am mixing up things here. This would have been 4 and this would be
3 because this is the third Queen it is conflicting with, and this
one is 1 because it is conflicting with this. So, essentially what
are the numbers that we have written here is where did my partial
instantiation stop. For the first value it stopped at Queen 1 for
the second value it stopped at Queen 4 which is this one. And then
for the third value it stopped with Queen 2 because it is in this
one and so on and so forth essentially. And so  MAX is equal to
latest. latest6 in this case is equal to 4. So, this is a maximum
value essentially. So jump back to Queen 4 essentially which means
this one. Now, if you remember the forward checking algorithm that
we had done, let me quickly do that. We have this 6 Queens and we
are trying to place them and we are cancelling future this thing.
So, if you place this we cancel this. So instead of cancelling it
let me write the Queen number here 1, 1, 1, 1, 1, 1, 1, 1, and I
place the Queen here. Then I write 2, 2, 2 here 2. Because all
these squares are being attacked by two and all the empty squares
are being attacked by none so far. Then I place a third Queen
which is here and I right 3 here 3 here and 3 here. And I place
the ok so I missed out there so this was actually 3 because it is
being  attacked  by  the  third  Queen.  And  then  when  I  place  the
fourth queen here I will write four here and four here and at that
point you can see that forward checking backtracks. It is doing
something  very  similar;  after  trying  the  fourth  queen  it
backtracks  from  here;  it  does  not  even  try  the  fifth  queen
essentially.  But  they  are  doing  something  similar  in  nature
essentially. This Gaschnig's backjumping is not looking ahead, but
when it is trying to find the value for the sixth queen it can
identify that the fourth queen was the culprit and instead of
trying to find the new value for Q5 it will just jump back to Q4
and try a new value for Q4. The forward checking algorithm with
the  numbers  that  I  have  written  here,  are  essentially  doing
something similar essentially, that it is looking ahead trying to
see which Queen will not be consistent with this value, so it is
in advance trying to do that. And it can sort of, the moment it
realizes that this is empty, the domain of this D6 is empty then it
backtracks  and  it  back  tracks  to  Queen  4  because  it  has  only
placed this, it has only placed these four Queens. And for that



backtracking thing naturally means backtracking trying to get a
new value for Queen 4 essentially. So, they are doing something
quite similar in nature essentially. But the approach is totally
different essentially. Both of them will try to look for a new
value for queen 4 essentially. The other thing I want to point out
is that the latest value here was 4 essentially. So, it could jump
back; but jump back is only for leaf dead ends. And this example
will illustrate this whole idea. Now x6 or Queen 6 is a leaf dead
end. We could not find a value for that, but we knew that we
should jump back to Queen 4. Queen 4 is this one. But all the
previous queens; now if you look at Queen 4, there is if you look
at this other diagram for Queen 4 it jumps back here, but this is
an internal dead end. This second diagram, the forward checking
diagram makes it quite clear that Queen 4 has become a dead end
now because the only value that we had, we tried and it did not
work. So it's so we have to and there is no other value left so it
is a dead end so we have to backtrack from here. But the latest
values that are stored with these Queens for which we found the
values was that for Queen 5 the latest was 4. Queen 4 the latest
was 3. For Queen 3 the latest was 2. For Queen 2 the latest was
one. Because we found values for these variables and therefore
that algorithm which we will write next simply extended the latest
value. So the algorithm we will say jump back to the latest but
the latest will always be there. So at the point where this where
we do the backtrack the jump back for 6 is 4 but the jump back for
5 is 4 for 4 is 3 and 3 is 2 and for 2 is 1 essentially. Because
that those are the values which are stored in the latest variable
essentially.  So  which  is  one  of  the  things  about  Gaschnig's
backjumping is that you can jump back from the leaf dead end but
you will not be able to jump back from internal dead ends, because
the  latest  values  would  simply  point  to  the  previous  variable
essentially. So we will, in the next class we will write this
algorithm and then we will try to look at a variation which will
allow us to jump back from internal dead ends essentially.


