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So we have been looking at search methods for solving CSPs. And today we want to look at 
methods which look back onto the search that they have done to try and backtrack in an intelligent 
fashion essentially. So generally speaking such methods are called lookback methods. And you 
might say, smart backtracking. So let us see what is the problem with the chronological 
backtracking first. So, if you look at this backtracking algorithm that we have seen. Then let us look
at a small example of a search graph, let us say a map coloring problem, and we have x1, which has 
let us say colors red and blue and green let us say. And we have x2 which is also red, blue, green and
we have let us say x3. So I will use some unique color names here. So colors are 1, 2 and 3. Just for 
the sake of this example. Then we have x4 which has totally unique colors, 4, 5 and 6 and let us say 
it is constrained here. And x5 with let us say 7, 8 and 9 and x6 with red and blue. So we have the six 
countries or six regions and we want to color them using the colors which are shown inside each 
node, and let us assume that we are looking at the backtracking algorithm. So, I want to illustrate 
what is the difficulty with chronological backtracking essentially. So, what is the search tree that 
this will explore? So, you start with some root node and then you look for values for x1. So, the 
values for x1 are red. So, let us say it is doing, we are simulating the algorithm. So we will not draw 
the other part of the tree. This is blue, but some parts we will draw just to give us a feel of the tree. 
And then we will go to x2. And x2 also we have three choices as you can see. So first you will try 
red but that is a dead end because there is a constraint between x1 and x2 that they cannot both be 
colored red. And then you will try blue, and if blue fails then you will try green and the same thing 
below these, which we will not draw the graphs for the moment. So, we have we are on the second 
color in x2, and when you go to x3, we have three colors, 1, 2 and 3. And likewise we would have 
the same three colors here 1, 2, 3 and so on. So all the tree grows like that. So x3 let us say we 
choose 1, and then we come to x4. And x4 has three colors again 4, 5, 6 and the same three colors 
would be here and here and here everywhere esentially, because that is basically the options for x4 
and then we have x5. So we have 7, 8, 9 and the same three colors would be here 7, 8, 9 and so on 
so there is a large tree sitting out here. And then we come to x6. That is node we are interested in. 
First, we try red and that is a dead end because of the fact that x6 has a constraint with x2 as well as 
with x1 esentially. So since x1 has got red we can't choose red for x6. So then we try blue, the second
color that is available for. So you can't try red and then we will come to blue and blue also we 
cannot try because x2 has got blue esentially in this. So this is a situation in which the backtracking 
algorithm finds itself in. It's got values for five colors x1, x2, x3, x4, x5. It is trying to get a value for 
the sixth color which is x6, and it has two options red and blue none of them works essentially. So, 
obviously the algorithm needs to backtrack essentially. And look for some other options for other 
colors for which you will be able to choose either red or blue for x6 essentially. Now obviously 
when we look at this problem, we can see that the problem with not being able to find a value for x6 
is because it is conflicting with variables x1 and x2. x1 has got red and x2 has got blue, and because 
x6 is constrained by x1 and x6, we cannot choose red or blue. So, now we want to look at algorithms 
which try to behave in what you can say that is a more intelligent fashion, that instead of jumping 
back to the previous variable, you should jump back to some earlier variable so as to solve the 
problem with this thing. So what does chronological backtracking do? Chronological backtracking 
will then try the same values red and blue for this. And they will obviously fail then it will try same 
values red and blue for this. So it is basically. Once this dead end is been encountered it will try a 
new value for x5 and then the values red and blue for x6, it won't work. Then it will go back and try 
a new value for x5 which is 9. And then again it will come to red in blue which will fail. And then it 



will go and try a new value for x5 then x6. And everything will fail, as you can see. This entire 
subtree, and it is a it is a large subtree is bound to fail. And the reason for that to us is obvious, 
because looking at the constraint graph we can see that x6 is constrained by x1 and x2. So if you 
want, if you are not able to find a value for x6, it is because we don't have matching values in x1 and 
x2 that have been chosen esentially. So here backtracking is explicit. Backtracking exhibits the 
behavior of thrashing. We call this behavior as thrashing. It basically it is trying out different values 
for x3, x4, x5. Without making any headway with a value for x6 essentially. And essentially we want 
to look at an algorithm which will allow us to do that. In fact we will look at two or three 
algorithms. 

One algorithm which is kind of similar to the kind of reasoning that we have been doing here will 
be based on the graph topology. It will look at the graph topology and try to decide where to jump 
back. But you will also see that there are other approaches. The graph topology based algorithm 
would not look at what are the values that are conflicting essentially. So it is really because the 
values that we have chosen for previous variables that are conflicting. And in some way if we can 
sort of work with values, maybe we will get a different approach to jumping back smartly and in 
fact those algorithms are called back jumping algorithms essentially. So we will look at two or three
approaches, one which will look at values, one which will look at topology, and then finally one 
which tries to combine topology with values essentially. We will see that each of them has some 
advantages each essentially. But before we do that we need some definitions. So, let ai be a partial 
instantiation such that there is no value b∈Di+1 and the vector ai and xi+1 = b is consistent. And 
we say that ai is a DEAD END STATE. and we say that xi+1 is a dead-end variable. So, both these of 
course go together. Whenever we have a DEAD END STATE, we have a dead end variable. Which 
is the next variable essentially. Then we have this notion of a CONFLICT SET, which is similar to 
this notion that we have just defined, but it is a little bit more general. So we say that let a be a 
consistent assignment to some variables. then if there is no, the same definition b∈D x , such that
a, x = b is consistent we say that a conflicts with the variable x. Or that a is a  CONFLICT SET of x.
So, obviously in a dead end we have a CONFLICT SET. But that is just one example of a conflict 
set. Dead end is with respect to a particular search algorithm, which is in our case the backtracking 
algorithm and therefore we are identifying the next variable. A CONFLICT SET is a more general 
notion it simply says that the partial instantiation is not consistent with some variable x essentially. 
Then we have this notion of a minimal CONFLICT SET. We say that a is minimal if there is no 
subset of a which is a CONFLICT SET. If there is no subset of a which is a CONFLICT SET as 
well essentially. Then, we have this notion of a Leaf dead-end is actually what we defined as a dead 
end earlier. And so if ai is equal to <a1, a2 .. ai> is consistent and is a CONFLICT SET of xi+1. Then 
we call it as a leaf dead end essentially. So, what we called as a dead end earlier is actually what we 
call as a leaf dead end. But as we go along we will see that you can have dead ends which are not 
leaf dead ends and that would happen is there if you backtrack to something and then you are at a 
dead end state essentially. So, this is essentially, the idea behind leaf dead end is when search is 
progressing, and a new variable or the next variable is a dead end. This is as opposed to 
INTERNAL DEAD ENDS, which are variables we have jumped back to. We will see that the first 
algorithm that we want to look at will be able to jump back from leaf dead ends so when I say jump 
back I essentially am trying to emphasize the fact that you are backtracking more than one level, 
you are not going to the previous variable but to some earlier variable essentially. And we will see 
that the first algorithm which is called Gaschnig's back jumping algorithm will be able to jump back
from leaf dead ends, but not from internal dead ends. And then we will look at some graph based 
methods which will be able to also jump back from internal dead ends essentially. We have another 
notion which is called NO-GOOD. So a consistent partial instantiation a is a NO-GOOD if it cannot
be extended to a solution. So, we can make an observation that conflicts are NO-GOODs by 
definition, because that is a notion of a conflict that that the conflict is with respect to a variable 
essentially. And conflicts are NO-GOODs because they cannot be extended to that variable that we 
are referring to. But NO-GOODs need not be conflicts. And the reason for that is with respect to a 



variable. And NO-GOODs may not be a conflict in the sense that that for every individual variable 
you may be able to extend that no-good to a larger partial instantiation. But, you may not be able to 
find consistent value for the remaining variables essentially. So, can we... it is possible okay that we
that we can extend a NO-GOOD to, so I must emphasize need not be. That you can extend it to let 
us say you have an NO-GOOD of five variables you can extend it to the six variable or to the 
seventh variable or to the eight variable individually, but not as a set essentially. So if you extend it 
to the seventh variable, you will not be able to extend it to the eight and so on and so forth 
essentially. NO-GOODs are of interest to us because these are consistent instatiations, which will 
always be dead ends in any kind of a search algorithm, and if you could somehow find them and 
remember them, then it might be worthwhile activity. And then we have similarly a minimal  NO-
GOOD, similar to minimal conflict that there is no subset of a NO-GOOD which is also NO-GOOD
essentially. minimal NO-GOODs would be more interesting, because you could probably spot them 
earlier. So just imagine a search algorithm which kind of learns NO-GOODs on the way and then 
every time it sees a NO-GOOD it says okay I do not need to extend that solution any further. So it 
will save on search essentially. 

Then we are interested in back jumping. That is the idea behind back that that if you are doing x1, 
x2, x3, x4, x5 and if you are looking at x6 in the example that we saw you want to jump back to x2 and
not to x4 if you cannot find a value for x6 essentially. So we have two notions associated with 
jumping back. We say that a jump is safe. So let us say that xi+1 is a dead end. It may be or may not 
be a leaf dead end. Then a jump to xj which is less than xi is SAFE if it does not preclude any 
solution. Okay so what is the idea here. Let me try to illustrate this. So you're... you are trying to 
find a value for xi+1 and you found a value for xi and let's say this is x1 and you got some value here 
then some value here then some value here and then so on and then you some value xi essentially. 
And you are not able to find any value for xi+1. what chronological backtracking would have done is
that it will have gone to xi. How do I show this, it would have gone to xi and tried the next value for 
xi and then the next value for xi and so on essentially. So this is what chronological would have 
done. What a jump back does, is that it jumps back to xj and try the next value for xj essentially. 
Which means that it has not explored all this tree which would have been lying below x1 but which 
had different values for the different variables essentially. And we say that.. we say that this jump is 
safe if there is no solution with all these things which are inside this tree. So, essentially you're 
jumping back to some variable xj instead of jumping instead of backtracking to xi and we say that 
the jump is safe, if you have not missed out on any solutions because you have this area which is in 
this shaded region which is actually a quite a large sub tree here. We are not seeing it as an 
exponentially growing tree. You are just excluding all that and you are going back to xj and trying 
the next value for xi which means that all those value for xj+1, xj+2 up to xi+1 that you could have 
tried, you have not tried essentially. So if I go back to my example that I started with, you can see 
that this is a safe jump. The moment you see that x6 R and B are not working, if you jump back to x2

and try the green value there, you are not going to have missed out on any solutions, because all this
region that is again shown in this enclosed area you would have been searching fruitlessly. So, that 
is a notion of a safe jump and any back jumping algorithm should only make safe jumps because we
want our algorithms to be complete, and then we want to talk about maximal jumps. It basically 
says jump back as much as possible. So, ideally an algorithm should do safe and as well as maximal
jumps. We will see that this notion of a safe jump is algorithm independent. Because the notion of a 
safe jump simply say that you are not missing out on any solution but this algorithm is... but this 
notion of a maximal jump is algorithm dependent. Because it depends on what data you are working
with. Okay so we are interested in this safe and maximal jumps and we will look at three 
algorithms. In the next class, I will start by looking at an algorithm called Gaschnig's back jumping 
algorithm which does not look at the topology of the graph, but rather tries to collect some data 
about which values are working and which values were not essentially.


