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Okay so, we had started looking at Constraint Satisfaction Problems and we had said that a

Constraint Satisfaction Problem is a set of variables, a set of domains and a set of constraints

on the variables. Now these are something which we have encountered all our lives. In some

sense we always encounter problems which can be easily  seen as Constraint  Satisfaction

Problems because that’s how we tend to think of them. For example, if you are going with

your family in a train, then your daughter says that, “I want a window seat”. So that’s a

constraint on the value of seat that will be assigned to her. Or if you are having a birthday

party or something, one child might say, “I want to sit  next to Suresh”.  These are small

constraints that we use to solve real world problems and they often occur in many situations.

But before coming to more examples I want to get something out of the way which is the case

of numeric constraints; because we will not be addressing numeric constraints in this course

and it’s a very well-studied kind of a field. For example, as a young student, you might have

looked at linear equations. So you might say that x + 2y = 12. So I can say this is a Constraint

Satisfaction  Problem.  Can  you  find  me  a  value  for  x  and y  such that  this  constraint  is

satisfied? And this is the kind of thing that we have done very often. Or you can add more

equations. You can say 3x + y = 13. So, you can have one or more equations. We know that

with one equation there are infinite solutions. And I’m talking about two variables. So two

variables, two equations, typically will have one solution. These are the kind of things that we

have encountered in our studies and there are well defined ways of solving, for example, sets

of linear equations, or you can say linear inequalities. So you can say x + 2y > 12 and 3x + y

< 13. So this is another kind of Constraint Satisfaction Problem. So, you’re saying that you

have variables x and y and you’re specifying certain number of constraints on these variables.

And you’re saying find me values of those variables which will solve this set of constraints. 

And the reason we will not be studying such constraints is that you know there are extremely

well studied methods which have attacked these kind of problems. So we know that there is



linear programming. Integer programming is in some sense talking about domains. Its saying

that domains are integers. That solutions must be only integers. So there is a whole host of

things, including quadratic optimization. So there is a whole area which deals with numeric

variables and numeric constraints and real valued variables and these have been very well

studied.

We do not want to look at that. What we want to do instead is to look at finite domains. What

do we mean by this? The moment you talk about numbers, essentially you are talking about

infinite domains and there are these other well studied methods for solving those kind of

problems. So we want to look at finite domains, where each domain is basically a small set of

values and then of course, we won’t specify what is the nature of constraints. We can say you

just give us any constraint, they are relations in general. It basically means they’re a subset of

combination  of  values  that  those values  can  take  and we will  restrict  ourselves  to  these

essentially.
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So let me take some more examples. What are we interested in? We are interested in finite

domain CSPs. And I want to just take a few more examples to see that many different kinds

of problems can be formulated as CSPs quite easily. So let’s take the example of timetable

scheduling. Every semester, in every institute, somebody has to take up this task of saying



that this course will be in this classroom and in this slot. So how can we see this problem of

timetable scheduling? What are the kind of constraints that we have? 

So we’re interested in finite domain CSPs, domains in which the number of values are finite

and we want  to look at  general purpose ways of solving such CSPs. Let’s look at  some

examples. 

We begin  with classroom scheduling.  When you say classroom scheduling,  what  are  the

entities involved? You have teachers, classrooms and slots and of course students. So students

don’t  really  play a  role  in  classroom scheduling.  It  would  be nice  if  we could  have  the

students in earlier so that students could choose courses first and then the scheduling could be

done. But typically that’s not how it is done, typically what we do is, we look at the teacher,

classroom,  slot  combination  and  try  to  do  scheduling  and  then  present  the  schedule  to

students and say you can now choose courses.

So what is the problem? The problem is that there has to be an association between teachers

and classrooms, and classrooms and slots, and of course teachers and slots. So every course

should have a teacher, should have a classroom and should have a slot.

What are the kind of constraints that we talk about? I can say, for example, teachers teach

only one course in one slot. Or a teacher can teach only in one room. So you cannot have a

course taught by a teacher in the same slot in the same room. 

Then you may have other kind of preferences. So for example,  teachers may prefer non-

consecutive slots. That is, I  may not want to take one subject and then immediately start

teaching another subject and so on. And I may have other constraints.

So likewise, there are constraints between classrooms, slots and courses that only one course

can be assigned to a classroom and only one course can be assigned to a classroom and a slot

combination. So we can pose this as a CSP and then of course we can have some algorithm

which will go through all the constraints and try to solve the constraints essentially.

So this also brings me to the idea of what we call as soft constraints, which some people call

as preferences. So the idea of a soft constraint is that not all of them may be satisfied. So

somebody might say it’s not possible to schedule some course so you must teach in two

consecutive  slots  and there  is  no  other  option.  So I  can  still  teach  two courses  but  this

preference that I had that I don’t want consecutive slots may not be satisfied. So typically the



way that soft constraints or preferences are handled is by associating a penalty with each

constraint that is not satisfied.

So  of  course  you  have  to  distinguish  between  hard  constraints  and  soft  constraints.  A

constraint like a teacher can only teach one course in a slot is a hard constraint. There’s no

way you can make a person teach in two different classes at the same time. But there may be

soft constraints which you may be allowed to violate but you may associate a penalty with

that.

So what happens is that when you convert this problem into saying that you can associate a

penalty, then  you want  to  minimize  the  penalty. And then this  becomes  an  optimization

problem. Find a solution where the penalty is minimum. We are not going to look at soft

constraints or preferences in this course because optimization is again a well-studied and a

harder problem than satisfaction. We are only looking at satisfaction. Constraint satisfaction

problems. So we’ll only look at hard constraints and say given these constraints give me a

solution.  But  there  are  many  interesting  problems  where  you  may  want  to  talk  about

preferences and soft constraints.
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So let’s look at examples again. Logical deduction as constraints. You must have studied

logical deduction at some point. You might say something like this that if you have P and if

you have P implies Q, and if you have Q implies R, then can you show that R is true? So we

know that we can apply modus ponens repeatedly and we can solve this. Now it’s interesting

to note that both working with logic and with constraints are kind of different aspects of the

same kind of thing that we are doing. Both are talking about giving values to variables. 

If you want to see this as a CSP, then the set of variables is the set P, Q, R and the domains is

the set true, false for each of these variables because this is now a boolean problem for each

of those distinct variables. 

And what about the relations? The relations are given by what’s given to us. So the relation is

between P and Q. I will use this as a way of saying that the scope of this relation is between P

and Q. So there are three variables. 

Let me also introduce the notion of a constraint graph here. Here nodes are variables and

there is  an edge between n and m if  n,  m participate  in  a  constraint.  This  idea  is  more

straightforward when we talk about binary constraints because only two variables always

participate  in  a  binary constraint.  But  it  can  be  extended to higher  order  constraints.  So

essentially if two variables participate in a constraint we say that there is an edge between

them.

For this particular problem, we have these three variables P, Q and R. So we draw three nodes

for them and we have edges between them and the constraint between P and Q is given by

RPQ and the constraint between Q and R is given by RQR. There is a third constraint which I

will introduce in a moment, but if you want to look at these two constraints, what is RPQ? RPQ

is saying what is a set of allowed values for the variables P and Q. 

One of the things that we will do, when we look at finite domain CSPs is that we will have

this relation as an explicit relation. Or as an extension, instead of an implicit relation. So for

example if I have numbers 1, 2 and 3, and I have a relation between x and y that x < y, so

instead of writing that x < y, I will give all the allowed combinations, which is the way that

we will specify relations - as a subset of the cross product. I’ll say x can be 1, y can be 2; x

can be 1, y can be 3; or x can 2 and y can be 3. So I will explicitly specify that.

Likewise, I can specify the relation between the variables P and Q. Here what is the variable?

That P implies Q is a true statement. And what does it mean? That I look at the truth table for



implication and see in which of those 4 rows the statement is true. So you know that it’s the

case that when P is true and Q is true, of course P implies Q is true. When P is false and Q is

false, also P implies Q is true. And also when P is false and Q is true. And this also happens to

be the relation between the other two variables which is RQR. It’s the same relation. So now

you can see that I can convert my logical reasoning problem into a constraint satisfaction

problem. 

There is of course one more constraint which I’ve not mentioned which is on the variable

itself. So let’s call it RP and we have one more constraint RP and this basically says that you

are only allowed one value. Why is that? Because we have said P is true and therefore the

constraint is that variable P can only take one value which is true. So that’s an equivalent way

of saying this that we have imposed a unary constraint on the CSP problem. But now what do

we have? We have a CSP problem and we can try to solve this CSP problem. So we can try

solving by search. Now of course one very nice, simple way to do search would be to start

with the most constrained variable and we will look at the search algorithm as we go along

but the first thing we will say is that P = true because I have a constraint which says that P

can only be true.

Once I say P = true, then I can look at the constraint between P and Q. So which means that

the consequence of this is that only the first of the three triples is allowed. The second one is

not allowed and the third one is also not allowed. So that means as a consequence of this Q =

true. And as a consequence of that R = true. So this is the example of constraint propagation.

I started by saying that I have three constraints, one on P, one on Q and R and one on P and Q

and this is the constraint graph that we have drawn below. And then I tried to search for a

solution and it turns out that once I fix that P is true, then I am eliminating this combination,

the other two possible values. So once we know that the first variable is true, then the second

one must be true. So if P is true, then Q must be true and when Q is true then R must be true

and then we have solved the whole CSP essentially. So you can see that logical deduction can

also be seen as a CSP. And in fact they are variations of constraint programming. So for

example  there  is  a  language  called  constraint  logic  programming.  So  there  is  logic

programming  that  you  must  have  studied,  there  is  constraint  programming  that  we  are

studying and then there is constraint logic programming and there are lots of variations of

these things that we can study. 
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Let's look at some more examples. A standard example that naturally falls as a constraint

satisfaction problem is map colouring problem. What’s a map colouring problem? That you

are given some map of a region and that you can colour any country with any colour or some

set of allowed colours that are given to you. For example, you might say this country prefers

red, blue or green and this country prefers green, blue and yellow and this country prefers

yellow, green and something, white and so on and so forth. Which means basically every

country is a variable and the value that it can take is the colour that you are going to use in

the map. And there are constraints between them. 

So we can naturally draw a constraint graph on top of this and say that if a country shares a

border with another country then there is an edge between them. And what is a constraint?

The constraint is that the same colour cannot be used for adjacent countries. Then if we use

red  for  one  country, then  we can’t  use  red  for  the  next  country. And that’s the  relation

between them. And then you can draw a constraint graph for every country; two countries

which have an edge between them and you have this problem to solve. So map colouring is

naturally a constraint satisfaction problem and we will use this as an example as we go along

for, looking for algorithms for solving CSPs.

Another  nice  problem which  I  like  is  the  n  queens  problem which  also  is  a  constraint

satisfaction problem, which basically says that place n queens, and when we say queens we



mean chess queens, on a n cross n board such that none attacks each. So of course you must

be familiar with this problem as well. 

If I want to look at a small four by four problem, I’ve to place four queens on four cross four

chess  board.  So  I  have  four  queens  and  I  have  decided  the  way  I  am formulating  this

problem. I have decided that I’ll place one queen in column one and one queen in column two

and so on and so forth because that is necessary. We know from the rules of chess that you

can’t place two queens in a column so we’ll sort of encode this as part of the problem. And

what we want is the row number. So these are the values and these are the variables. 

So in encoding it in this fashion we have already encoded a constraint that you can’t place

two queens in one column because you have kind of implicitly assumed that’s the case. Now

only you want to find which row to place it in and what are the kind of constraints that we

can talk about? So supposing we are posing it as a binary constraint satisfaction problem.

Then I might say something like, okay let me write q1 q2, but it’s easier to write just R12 if

the  context  makes  it  clear.  I’m  not  specifying  the  solution,  I’m  only  saying  what’s the

constraint between two queens, because that’s how the high level statement of the problem is,

that no queen must attack another queen. So what is R12? It says that if I place queen one in

row one then I cannot place queen two in row one or two, it can only be in row three. Or if I

place queen one in row one, I can place queen two in row four. That’s allowed. Then if I

place queen one in row two, I can’t place queen two in rows one two or three so it must be in

row four only. Likewise, if I place queen one in row three, I can only place queen two in row

one or if I place queen one in row four, I can place it in row one or two.

I’ve specified completely the constraint between q1 and q2. Likewise, I can specify constraint

between q2 q3 and so on. I can pose this as a binary constraint satisfaction problem. Now

obviously you can imagine that I could have posed it as a constraint satisfaction problem in

which the scope is all four queens. So if the scope is equal to q1, q2, q3 and q4, then actually

what  am  I  doing?  If  I’m  specifying  how  all  four  queens  have  to  be  placed,  then  I’m

specifying the solution. In fact, a relation on all four queens is called a solution relation. And

in fact that’s the task that we have set ourselves, to find the solution relation. Which means,

what are the combinations of the four queens that we can place? You know that, for example,

there  are  two possible  solutions  to  this  problem.  So the  solution  relation  has  two tuples

essentially and actually our task is to find one of them. And this is a general idea behind



CSPs, that you don’t specify all the constraints. You specify some constraints and then you

find  solutions  which  satisfy  those  constraints.  Of  course  the  key trick  there  is  to  satisfy

enough constraints so that what you get is only the solutions that you want. In this case of

course it’s easy to do as a binary CSP because the problem itself  is  stated like a binary

constraint. That no queen must attack another queen. So we can easily do that. And then of

course you go looking for solutions essentially.

Now if you look at the two solutions that I have, you can see that in the solution equation, if I

place queen one in row two, then the queen two must be in row four. Or if I place queen one

in row three, then queen two must be in row one. So in fact these are the only two things

which participate in the solution. Even though the others are valid constraints, they do not

participate in the solution. And in some sense our task is to uncover or prune away those

spurious constraints, relations between, things like that.

Another nice thing about this problem is again the idea of propagation that we saw when we

were looking at the cryptarithmetic puzzle. So if you’re looking at a slightly larger problem,

so lets say we are looking at a six by six problem. So we have six queens and they have to be

placed. So one thing we can do is we can, as we place queens, we do search, for example.

Lets say we place this queen here and then what we do is we mark out or cross out squares

where we cannot place another queen. And the reason is because that’s what the problem

states, that no queen must attack another queen. So having placed the first queen in the top

left corner, we can place the second queen only in the third row essentially. So let’s proceed

with that. We place the second queen here. And then like before, we cross out places where

we cannot place any other queen. And the third queen can be placed in the second row. No it

cannot be placed. Sorry I should have crossed it out. So the third queen can be placed only in

the fifth row and once I do that, I can now place the fourth queen in the second row. And

having placed this fourth queen in the second row, we can see that no place for q6, because

the  entire  column  for  queen  six  has  been  crossed  out  essentially  by  this  process  of

propagation forward or looking ahead forward. Even before we try queen four, there is a

place for queen four to try, we can actually backtrack from this place itself and then say that

okay you cannot place this on q4 and then, essentially of course backtracking would mean

you have to undo some of the crosses that you have to do so that’s part of the algorithm that

we will see later.



But you can see that we were doing essentially search here. We were saying, let me place a

queen at the earliest location I can. But we could backtrack earlier than normal search would

have done essentially. Normal search would have backtracked when it reached a dead end.

This one has not reached the dead end. It still has a place for queen five to place. But it will

not do that. Because the moment the domain for queen six has become empty; so, placing

these crosses is like removing elements from the domains of the different queens. So the

moment the domain of q6 or the domain d6 becomes empty, the algorithm will backtrack

from here essentially.

So this  again illustrates that these problems like map colouring or logical reasoning or n

queens or scheduling can be naturally posed as constraint satisfaction problems. So I’ll stop

here  and  we’ll  have  one  more  class  in  which  we  will  look  at  some  more  examples  of

constraint satisfaction problems, before we move on to actually looking at algorithms to solve

them essentially.
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