
Artificial Intelligence: Constraint Satisfaction Problems
Module 4: Directional Consistency
Lecture 3: Directional Arc-Consistency and Tree CSPs
Professor: Deepak Khemani
Department of Computer Science and Engineering, IIT Madras

Keywords: directional consistency, i-consistency, directional i-consistency, directional arc
consistency, tree CSPs

Okay, so in the last class we looked at this notion of width and induced width and orderings
associated with that. So assuming that you can find, you can use one of the algorithms, let's say
min induced width algorithm or min fill algorithm to find an ordering of a of a graph. The next
question that we are interested in is if you want to enforce certain amount of consistency on the
ordered graph now, what is the degree of consistency that you want to enforce. That is the question
we want to ask and the objective is to try and make the search backtrack free essentially. So this
notion of, there is this notion of what you call as directional consistency. So there are two aspects
of this, one is that it has a direction and the direction is dictated by the ordering that you have
somehow chosen. And the other is that local, which means the degree of consistency that you want
to enforce essentially. Now in general if you look at the diagram that we had drawn earlier that if
you want a node i to be given a value, then in the ordering you may want it to be related, it may
have certain parents in the ordering, then let's say this and this and there are other nodes in between
which you are not bothered about for this particular node essentially. So given given this ordering,
if you want to give a value to i, then in this example there are three parents, and the value that you
are going to assign to i must be consistent with the values of those three parents. So essentially it
means that if I take these three nodes, any value to this must be, or must allow a value for i, or xi.
So this is the notion of directional consistency. I am not interested in arbitrary consistency, which
says that you know if you give a consistent value to any subset of variables, then you can extend it
to one more variable. That’s the notion of directional i-consistency. The notion of directional, that
was a notion of i-consistency. The notion of directional i-consistency would be that if a node has i -
1 parents and if you assign a consistent value to those parents then you should be able to find a
value for that node essentially. So what is the relation between width and remember that width is of
an ordering or induced width of an ordering, which the amount of consistency or the degree of
consistency that one wants to enforce to ensure backtrack free search. That is the main question
that we are looking at now. Okay, so if you look at the graph that I have drawn here and if you talk
about arc consistencies, so we will start talking about arc consistency first. You can see that there
are four nodes, which are connected, the ones that we have drawn and we have this notion of arc
consistency amongst all those nodes, but if I name those nodes for example, if this node is j for
example, if you look at i and j, then what do I need to do, I need to do arc consistency only in one
direction, in the sense that I only need to make j arc consistent with respect to i. I do not have to
bother about making i arc consistency with respect to j, and the reason for that is that we have
already frozen an order in which we will process nodes. It basically means that as long as j is arc
consistent with respect to i, then I will always find a value for i because that is the meaning of
saying that node j is arc consistent with respect to node i, that for every value that I choose for j, I
will find a value for i. So if I, as long as I can prune the value in j, I don’t have to bother about
pruning the values in i, because I will only give a value to i after I have given a value to j. This
order is giving us this notion of directional consistency. So I need to do only in some sense if you
look at arc consistency only half the work, only one side of consistency I’ll need to enforce, and that
obviously saves me time, not only it saves me time because it is half the work, but also saves me
time because propagation does not happen, that once you have deleted a node, pruned the node, it is
never going to be pruned again essentially. So we will look at that.

So let's define the notion of directional arc consistency. So we will say DAC. So let's give a

definition: a network R, which means a set of variables, set of domains, and a set of constraints is, I
will just use the term DAC here, with respect to an order r, order d, if for every variable or if every
variable xi is AC respect to every xj where j > i. So that is a simple notion of, that that that if you
are related to a variable xj, then you better be arc consistent with respect to j essentially. So I must
add of course xj that is related to i, which means Rij is a relation in my domain. So let's write an
algorithm for this and the algorithm is called DAC(R). So we had this algorithm called Revise and
we had written two notions of it either we revise xi with respect to xj or the other way of calling it
was with Di, Dj, Rij. So we can see that there is only one loop here and you are simply going from
the last to the first, so let's do a small example and let's choose a equality relation rather than
inequality relation because they are kind of easier to visualize, so let's say I have r, b, g as three
colors here and let's say r, g and y here and let's say r, y and b here, and let's say r, g and y here, and
the relation is equality which I will write like this. So we are basically saying that the two related
variables must get the same color essentially whatever the problem is, it is not map coloring it is
something else, but you want the same color to be given to that essentially. Maybe they belong to
the same team or something like that. so let's do this algorithm now. The first step would be to
consider the last variable and when you look at the last variable it is related to the second last
variable. So the first thing would be its influence on this and essentially you will prune from this
anything which cannot be extended to. So let me just call them, let's say this is A, B, it is always
good to give names. So first we will look at D and D is related to C, so in the first step, in the first
cycle, you will prune from C all those values which do not have a matching value in D, so r has a
value in D and y has a value in D, and b does not have a value in D, so we will prune this one value
from this domain. Then we will come to C in the second cycle. Now j is become C so to speak.
We will prune A with respect to C. So this is our second step. In the second step because it is
related to that r has a value in C so it is fine. b does not have a value now in C, so b will go from
here and g does not have a value in C, so g will also go from here. In the third step, we will look at
B because there will be only three cycles in this. There are only four variables and it has no effect.
In the sense it does not do anything. So what we get at the end of this is this new problem, CSP
problem, in which A’s domain has been pruned down to r, B’s domain has not changed, C’s domain
has got r and y, and D’s domain has not changed. So the number of deletions we have made is
small and you can see that this is DAC, but not AC. So when I say AC, I mean full AC. It is not
full AC because if I for example chose a value for B let say green, I cannot get a value for A
essentially. So B is not arc consistent with respect to A, but A with respect to B and that is what
matters and A is with respect to C and that is also what matters because once you choose a value for
A, which is red, I can choose red for both B and C, and once I choose a value red for C then I can
chose a value for D essentially. So you can see that in this particular example, it results in
backtrack free search, but this is just an example, it is not the proof of the fact that we may be argue
about that a little bit, but first let's talk about the complexity of this algorithm. What is the
complexity? So we are going to process e edges in the graph and in each edge we may call Revise
once and that will give us k2. If you remember Revise complexity is k2. So this algorithm is ek2. If
you remember the complexities we had considered when we were considering full arc consistency,
we started with AC1 which had much higher complexity, then that was nek3 or nek4 or something.
Then we looked at AC3 whose complexity was ek3, and then we came to AC4 which was, whose
complexity was ek2 and this is basically the bottom that you can hit, it is the rock bottom, in the
sense that even to verify whether the network is directly arc consistent you will have to ek2 amount
of work essentially. So it is an efficient algorithm essentially.

Okay, so now let's talk about handling trees, CSPs where the constraint graph is a tree. So the basic
question is for tree CSPs, what is the min induced width. If you can answer this question, then we
can get some clue as to how much consistency is enough. So let's try to answer this question. So
let's just do this with an example, so let us say I have this tree, A, B, C. We had looked at a similar
example sometime ago, but let me make it a little bit larger, F, G, H. So this is clearly a tree graph.
Now, one thing you will observe here is that an ordering would be bad if A were to be at the end

because A would be connected to B and A would be connected to C, and A would be connected to
D, and we had seen a similar example earlier that if we, let's say we are doing map coloring now
with three colors and if you choose, so let's say all domains r b g, then you can see that this is bad
ordering because if I choose red for this and blue for this and green for this, I do not get a this thing.
So obviously we are not talking about bad orderings. What is a good ordering? So let's say the
min, so it turns out that for trees, if I look at the min width ordering, what does it say, it basically
says put the smallest degree nodes in the end. So I can choose any smallest degree node. I can put
D in the end, then I can put C, then I can put A, because by then A would have become degree 1
then I can put E, and I can put H. You can verify that this is indeed a plausible min width ordering
and the graph is A is connected to, A is connected to B and to C and to D and D is connected to F,
where is F? Sorry, I have not put F here is it? Okay, so let's say F is here, so B is connected to F,
and B is connected to E, and F is connected to B, and F is connected to G, and F is connected to H.
Width, I will leave it to you to verify, is one. Every node has exactly one parent essentially. D has
only A, C has only A, A has only B, E has only B, H and G have only F, and so on essentially. So
the next next thing to observe is an implication of this, so if width is equal to 1, then induced width
is equal to 1. Why is that? Because if width is one, has only one parent. Each node has only one
parent and if each node has only one parent, you don’t have to add any connections because there is
only one parent and therefore induced width is equal to 1 essentially. Now, you can see that a tree
can always be arranged in a ordering of width one, which also means that the ordering, the induced
width of that ordering is one. What is the implication of induced width. The induced width tells
you how many parents you are connected to in the worst case, right? In this case, the answer is one.
Which means only one parent is influencing your value that you can choose and if induced width is
one, this implies DAC is enough. Because you only need to make the parent consistent with a given
node essentially. So in this new ordering as long as the value of A is such that if it is consistent with
C as well as consistent with D, then whatever, then whichever values that I choose for A, I will be
able to choose the value for C and D. Likewise if you start from the beginning, which is F in this
case, that is the first node, if F is consistent with B and G and H, but this is only arc consistent in
one direction then whatever value I choose for F, I will be able to choose the value for B because F
is arc consistent with respect to B and I will be able to choose a value for G and for H and so on and
so forth. So handling tree constraint satisfaction problems is a relatively easier task, but if there is
no ordering which is of min width or if the width of a graph is more than one, which means there is
no ordering, which has width one, which means that there are loops in the graph, there are cycles in
the graph, then things become a little bit more complicated and we know that when there are cycles,
a node will always have two parents, some nodes will always have two parents, which means we
will have to worry about the consistency of those two parents, so we must give values to those two
parents which are such that you can give a value for this node whose parents are there. It basically
means we will have to do consistency which is more than arc consistency, and in fact in that case
path consistency. So we will look at path consistency in the next class and we will also try to
generalize that to the notion of higher order consistency and then try to come to a conclusion about
how much consistency is needed given that you can produce a graph of a certain width essentially.
So again when you are talking about width, you must distinguish between min width and min
induced width. Min induced width is a little bit harder to find, but min width is easier to find, in
fact we have a greedy algorithm. Very often min induced width algorithms will also produce good
orderings, but not necessarily the minimum width ordering. That is a little bit of a problem. We
will address that. So we will take that up in the next class.

