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We’ve  been  looking  at  consistency  enforcement  and the  general  idea  is  to  talk  about  i-

consistency. i-consistency  says  that  a  consistent  assignment  to  any  i-1  variables  can  be

extended to i variables. Arc consistency is two consistency. Path consistency is what we are

looking at this moment and that’s three consistency.

Enforcement of consistency results in changing the network. We use the term network and

CSP interchangeably. When you start with R, you end up with some R’ which is slightly

different. We saw that when we do arc consistency, domains are pruned. So the domains may

change. If you do path consistency, then binary relations or constraints may be induced and

we saw an example of  this.  Let  me just  repeat  that.  If  you have three variables  and the

relation is not equal to in the two colour map colouring problem, then we transform it to a

new network. So, the third relation, the equality relation is induced.

In general enforcing i-consistency induces relations of arity i-1. We will see that this is the

generalization  we can make and its  indeed true.  So what  does  this  mean? It  means that

supposing we do six consistency on a binary constraint network we may make it and I say

may make it in the case when it was not originally six consistent. If it was not six consistent it

may  make  it  non-binary  because  a  relation  of  arity  five  may  be  added.  So  this  is  the

generalization that you must keep in mind when you’re looking at specific algorithms – arc

consistency, path consistency and so on. This is generally true of i-consistency.
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Now, the questions that we want to often ask about consistency is, what is the impact of i-

consistency? Why are we looking at this consistency at all? The two questions that we are

interested in asking are can it say anything about the existence of a solution? And the other

question that we often want to ask and we will do so more and more is, can we have back

track free search? We will try to answer these questions as we go along but I can remind you

of some examples that we have seen. By back track free search, we mean that the search

algorithm never has to back track, even though the algorithm that we will study will, and it is

in fact called back tracking.

What does back tracking imply? You give a value to the first variable, to the second variable,

third variable, fourth variable. We looked at the n queen’s problem if you remember. Then at

some point you get stuck. You cannot give a value, let’s say, to the ith variable. Then a typical

back tracking algorithm will go back to the i-1st variable and try a new value. If this doesn’t

happen then the  search  is  said  to  be  back track  free  and we will  see  that  under  certain

conditions, we can make the search back track free.

So, there is always going to be a trade-off between propagation and search. So, the more

enforcement of consistency you do, the less amount of work the search algorithm will have to

do. And ideally if it is back track free that basically it means its linear. Give the value for the

first one, second one, third one and so on essentially. That’s a trade-off and it’s a question

we’ll be interested in. We saw the example of map colouring. The relation is not equal to and

we have two colours. It is arc consistent but no solution exists. So, arc consistency is not

enough to tell us whether a solution exists or not.



On the other hand, if you look at an example, so it is some constraint problem and whatever

the relation is, it is shown by the matching diagram. What can you say about this particular

network? This network is path consistent. If you go back to the definition of path consistency,

it says that every edge in the matching can be extended to a triangle for every other variable.

And you must keep in mind that there is an implicit constraint whenever there is no constraint

stated.  It  exists  because  you’re  allowed  to  choose  any  of  the  two  values.  There  is  no

constraint in that part essentially. So always when we’re looking at such diagrams you must

keep in mind that if there is no edge in the constraint graph, then it means the universal

relation but in this example, if I look at the matching diagram, I should really draw the edge

because it’s allowed. This is an example which is path consistent but not arc consistent.

Why is it not arc consistent? That is because if I choose the value X = a, the solution cannot

be extended. Remember this is the matching diagram. It means if there was a related value in

the other variable then there would be an edge from a to that value. Which means that this is a

path consistent network because every edge can be extended to a triangle. As you can see

there is only one triangle here but it’s not arc consistent. So, path consistency does not imply

arc consistency but path consistency is enough for BCN to say that a solution exists.

I must qualify this statement by saying that strong path consistency is enough. So, the word

enough is actually tied up to the word strong because if I give you a trivial example in which

nothing is related to anything else, then this is by definition path consistent. If you remember

the definition of path consistency, every edge should be extended to a triangle but there is no

edge  here  so  this  is  vacuously  true  and  it  is  by  definition  path  consistent.  So,  its  path

consistent but it’s not arc consistent and it doesn’t have a solution.

We need strong path consistency to guarantee that a solution exists for a binary constraint

network and in general, strong i-consistency implies that for all j < i, network is j-consistent.

I’ve  introduced here  the  notion  of  strong consistency and strong consistency says  that  a

network is strongly i-consistent if it is i-consistent as well as for all js < i, it is j-consistent. So

of  these  networks,  you  can  see  that  none  of  them  is  strongly  i-consistent.  We’ll  keep

addressing these issues as we go along.

In the last class when we were talking about the revise algorithm, we said that if we have

these four variables X, Y, Z, W and we have the edges in the matching diagram as shown and

we have two operations –first XY with respect to Z and then XY with respect to W. A pair of

triangles would have remains after these two calls. So, after you do these you get this network



in which the edge between Z and Y would’ve remained. If you had one more call of revise

ZY with something else, then the edge that is hanging there between Z and Y would also have

been removed essentially.
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So, let’s look at what revise is and we can generalize it to higher order revise. I may not do it

explicitly but you have seen revise one or revise as we called it. We said that for every value

in the domain of X, if there is no value in the domain of Y, then delete that value from domain

of X. That’s what revise was doing. It was pruning the domain of X when we were revising X

with respect to Y.

When we talk  about  revise  three  which  is  needed for  path  consistency, we can  use  two

notations. The notation that Dechter uses is Revise(XY, Z) and the other notation which I

sometimes use uses the arguments Dz and the three relations Rxy, Ryz and Rxz. The revise

algorithm says that for every pair (a, b)  Rxy, if there is no c  Dz such that (a, c)  Rxz andϵ ϵ ϵ

(b, c)  Ryz, then delete the pair (a, b) from Rxy.ϵ

Essentially, we are saying that for every edge in the matching diagram, if there is no c which

will make it a triangle then remove (a, b) from Rxy. This is the basic revise algorithm and it

prunes the set of binary relations or it induces a set of binary relations. So if you have a

universal relation, it may induce it as we saw in the example with three nodes and the map

colouring example.



We can also write this using the notation of relational algebra. I’m pruning the relation Rxy.

From Rxy I may remove some things or I may keep only some things – whichever way you

want to look at that. What do I want to keep? Whatever I can project on to the variables XY

from Rxz ∞ Dz ∞ Rzy. So, I create a set of three tuples by doing this join by selecting only

those things in which there is a path going from the domain of X to the domain of Z. That’s

what I’m doing by joining with Dz and then from there to Y essentially. So, that’s like joining

whichever are the edges in between Z and Y. So, I can use this as an alternate notation for

revise instead of the algorithm. Rxy = Rxy ∩ πxy (Rxz ∞ Dz ∞ Rzy).

What is the complexity of revise? When we say for every pair, there are k squared pairs and if

I’m checking that there is no c, I need to look at, in the worst case, k elements. k is the size of

every domain. So essentially revise is O(k3). Revise three is O(k3). Revise two or revise was

order O(k2) essentially. And from there again you can jump to a conclusion – revise i would

be of order O(ki) and revise i would basically say that for every set of i-1 variables if there is

no value in the ith variable then remove that tuple.
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Once we have revise we can talk about the algorithm and like AC-1 we have an algorithm

PC-1 which is also brute force. The first thing to observe here is that we’re not going to look

at the constraint graph at all unlike what we did in AC-1. In AC-1 we were only pruning

domains  and we were only  pruning those domains  which  were related  and for  universal



relations, we did not need to prune anything so it was not part of the algorithm but here we

may end up introducing new relations.

So, again just to remind you, if you had the map colouring problem with not equal to, not

equal to, we’ll end up inducing a relation of equal to. So that means originally Rxy was

universal which means anything in X was connected to anything in Y. This is not a very

general problem. They had only two variables – red and blue. Only then you end up inducing

the relation. If there were more colours then you would not end up doing that essentially. So,

for this problem, Rxy was originally universal and we changed it to equality. We had to look

at all pairs. The point is that not just for the pairs which are related, not just XZ and ZY, but

we also have to look at also XY because it’s from XY that we’re deleting this pair. So, we

have to call revise of XY with Z also even though XY is not part of the relation.

I’ll write the algorithm at a high level. The general algorithm is that we’ll revise for each pair

of variables Xi and Xj, and not for every edge which is a different thing all together. You call

revise  three  of  Xi,  Xj  with  Xk essentially  and  you  do  this  till  no  relation  changes.  It’s

analogous to AC-1. It’s simply a brute force algorithm. Call revise three with all possible

pairs. Actually you should think of it as all possible triples since at any point you’re looking

at three variables at a time. If a relation changes then do the whole thing all over again. That’s

the brute force part of it.

What is the complexity of this? In the worst case, how may cycles will we do? In the worst

case, only one edge per cycle will go. Worst case means we have chosen the wrong order of

things. Only one edge is vanishing per cycle. So, in the worst case we can have O(n2) because

there are n2 pairs of variables and each pair of variables have n2 edges between them. Then

the worst case is O(n2k2). 

What is the complexity of the loop? You’re processing n3 combinations or triples of variables

because you’re choosing for each variable which gives you n and for each pair of variables

gives you n2. So, there are n3 triples of variables and for each of them revise costs k3 since

revise is O(k3). So, if you put this whole thing together, then in the worst case you have to

basically multiply these things – O(n5k5).

This will give you a feel that as the amount of consistency that we enforce is bigger, in the

sense that as the i of i-consistency becomes larger and larger, the complexity of the revise

itself increases. It’ll become ki plus the number of combinations of variables that you have to

look at – that also increases and therefore consistency enforcement becomes more and more



expensive. So we will need to slowly move towards looking at how can we do less work in

consistency enforcement and still gain a lot from that.

We will continue with path consistency. Then we will talk about i-consistency briefly and we

will move on to trying to see if complete consistency enforcement is necessary or not. Can

we  get  away  with  partial  consistency  enforcement?  And  the  motivation  for  that  or  the

justification for  that  would come from the fact  that  at  least  the simplest  algorithms will

process the variables in a chosen order. The search will  always say, look for a value for

variable X1, then for X2, then for X3 and so on essentially. Maybe we can exploit that order

to do less amount of enforcement. In the next class, we will move towards an improvement of

PC-1 which is similar to AC-3 but which we just call PC-2.
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