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We have been looking at arc consistency and before we move on to path consistency, let me

give a notion of generalized arc consistency for non-binary networks. Very often in the real

world we have to deal with problems which are not binary constraint networks and which

have to be expressed as higher order networks. We need to define a notion of arc consistency

over such networks. Remember that basically arc consistency says that if you choose a value

for a variable, then you can extend it to the next variable and so on.

Look at  an example like this.  Suppose we say X+Y+Z ≤ 15. You can see that  this  is  a

constraint over three variables X, Y and Z. Now suppose we also have another constraint

which says that X ≥ 13. That’s a unary constraint. That’s a separate constraint essentially.

Now what happens because of this? We know that we cannot have arbitrary values in the

domains. In particular, the impact of this constraint is that Y ≤ 2 and Z ≤ 2. So it has the same

flavour of arc consistency which says that you take a variable and because of a constraint you

prune the  domain of  the  variable.  This  is  what  generalized  arc  consistency does.  In  this

example,  we are looking at a constraint over three variables but we can extend it to any

number of variables and that’s the definition we are looking for essentially.

So we say that  a  variable  X is  generalized arc consistent  with respect  to  a  relation or a

constraint R, whose scope is S, if for any a  X, there is a tuple in Rs which contains a. Whenϵ

I  say contains  a  it  basically  means in  the proper  position,  i.e.,  where ever  the variable’s

position is in that tuple, it contains that value a. So if that is the case, there is at least one tuple

in the relation such that a finds a value. That means if we had given a value to a, then that

constraint  is  satisfied  and  we  could  have  given  values  to  other  variables.  So  that’s  the

generalized  notion  of  arc  consistency  that  we  are  looking  at  and  we  could  do  a  revise

operation for this by simply saying revise(Dx), prune the domain of X. So this is very similar

to the definition that we gave for revise over a binary constraint network except that in this



example it is not binary and you are working with a larger constraint and you are doing a join

with the domain which contains S minus X. Dx  Dx ∩ πx (Rs ∞ DS-{X}).

So when we are looking at non binary, its simply extended to more variables, that instead of

binary constraints we have a variable over S variables and the join is done by removing the

variable  X  and  seeing  whichever  other  values  we  have.  We are  pruning  the  domain  of

variable X essentially.

There is a slightly different notion of arc consistency in which we see what is the influence of

X on the relation amongst the remaining variables. We can prune the remaining variables and

this is called relational consistency. At some point, later I will mention it again but this kind

of gives us a nice stepping stone into path consistency because the key thing that we do in

path consistency is to prune relations whereas in arc consistency we are pruning domains. We

can  also  think  of  them  as  inducing  relations  of  arity  one  or  unary  relations.  In  path

consistency we’ll go back to binary constraint networks to start with. We will see that we are

inducing binary relations on networks essentially.

(Refer Slide Time: 7.37)

One thing that you should notice as we describe at path consistency is that when we were

talking of arc consistency we were talking about variables which are related to each other. We

said that if there is a constraint between X and Y, or in other words if there is an edge in the

constraint graph between X and Y, we will do the pruning of domains at either end of the



edge but  when we look at  path consistency we’ll  see that  we will  even look at  pairs  of

variables which don’t have an explicit constraint. And this makes sense because if we don’t

have an explicit constraint it basically means that everything is allowed. We’ll see an example

there but let me first start with the definition.

We say that the binary constraint network is said to be path consistent or three consistent if

every pair of consistent assignment of any two variables, can be extended to a third variable.

Take a look at the example that we had seen in the previous class of the network of three

countries with two colours. This network that we saw in the last example is a map colouring

problem.

We saw that this network was arc consistent but not path consistent. Why is that? If I give

names to these variables – X, Y and Z, you can choose pair  of values for X and Y. For

example, you can choose X = red and Y = blue. That’s consistent enough and in fact the

network is arc consistent and we say that for any value you choose for a variable, you will be

able to choose another value for the related variable. You can choose X = red and Y = blue

but we cannot extend it to variable Z because we can choose neither red nor blue for Z and in

fact this problem has no solution and in this example, we can see that this network is not path

consistent.

Another way of looking at this is to say that every edge in the matching diagram can be

extended, well extended is not quite the right word but I hope you will understand what I’m

trying to say, to a triangle with every other variable. If you compare this to what we said

about arc consistency, we said that arc consistency says that every point in the matching

diagram has an edge which takes it to every other domain. So for every variable, every point

is connected to a value for every other variable. So, every point can be extended to an edge in

the sense that you start with any point in any variable and you will find an edge which takes

you to another point in the domain and so you have found an edge essentially.

What we’re saying here is that you find any edge in the matching diagram and you take any

other variable and you will find that there is a point there which makes a triangle with the

edge that you have chosen. So that’s what I mean by saying that every edge in the matching

diagram can be extended to a triangle with every other variable essentially.

Let me give another example here. This is also something that we have seen. It also has three

countries and two colours as before. What I’ve drawn is a constraint diagram or a constraint

graph. I’ve not drawn the matching diagram here. So there are three countries. X is adjacent



to  Y and Y is  adjacent  to  Z but  we don’t  know anything about  X and Z or  there is  no

constraint.  Nobody  has  said  that  they  must  be  coloured  differently.  Is  this  network  arc

consistent and is it path consistent?

It’s definitely arc consistent. When I ask this question, you must keep in mind that sitting here

between X and Z is a universal relation. What does that mean? We are not constrained what

pairs we can choose essentially. So if I want to actually draw the matching diagram for this

problem, then what I would see between X and Z is that r is allowed with b, r is allowed with

r, b is allowed with r and b is allowed with b. So you must keep in mind that if a constraint is

not explicitly specified, then we are not barring any tuples which means you are allowing all

combinations of tuples. You are allowing X = r and Z = r, X = r and Z = b, or any other

combination. So that’s the universal relation. So implicitly whenever there is no constraint

specified it means anything is allowed. So keeping that in mind, is this network arc consistent

and is it path consistent? If you notice there are only two edges between X and Y and there

are only two edges between Y and Z but there are four edges between X and Z because it’s a

universal relation.

Now if you look at the definition of arc consistency, this network is clearly arc consistent.

Even the other example we saw which didn’t have a solution was also arc consistent. This

luckily has a solution. And it is also arc consistent because for every value in X or Y or Z we

can choose a corresponding value in X or Y or Z in any other variable but it is not path

consistent because there are edges we can choose between X and Z which cannot be extended

to Y. For example, if you choose X = b and Z = r, it cannot be extended to Y. The search

algorithm that we will be looking at will essentially say choose a value which is consistent

with all the constraints that are given to you.

You choose for the first value X = blue. Then you, let’s say, go to Z and that’s the order in

which you are processing the variables and you say I choose Z = red, which is fine as far as

the constraint goes but then I cannot choose a value for Y. I cannot choose red because Z

already is red and I cannot choose blue for Y because X already is blue essentially.

What  will  enforcement  of  path  consistency  do?  Its  analogous  to  what  we  did  in  arc

consistency. In arc consistency we inferred unary relations. So that is, from two consistency

we inferred unary relations. In path consistency, which is three consistency, we will infer

binary relations. So we will impose a relation between X and Z and what is the relation? The

relation is that X = Z. Its that they must be coloured with the same colour essentially and we



had actually  seen  this.  When we looked at  composition  of  relations  we said  that  if  you

compose Rxy with Ryz, you get a new relation Rxz which is in this case is the relation that

we are looking for. And that is what path consistency is all about essentially. The interesting

thing about path consistency is  that it  changes the constraint graph. It  adds edges to  the

constraint graph.

(Refer Slide Time: 20.12)

What we need is a corresponding operator which we will call as revise three. There are two

different notations that you can come across. The notation given in Rina Dechter’s book is

that you’re revising an edge XY with respect to another variable Z and in my book I use a

slightly different notation which is similar to what we used for revise two. It’s that you are

looking at the domain of Z and you’re looking at the relation XY but you’re also looking at

YZ and XZ. You’re looking at all three relations essentially.

And what does this do? It basically deletes edges or pairs from Rxy that are not part of a

triangle with the third variable. We can express this as an algorithm. It’s that for every pair (a,

b)  Rxy, if there is no c  Dz such the pair (a, c)  Rxz and the pair (b, c)  Ryz, then deleteϵ ϵ ϵ ϵ

(a, b) from Rxy. So the fact that we are representing relations explicitly makes life reasonably

simple for us. And now you know a relation is just a collection of tuples and we are simply

deleting tuples from there.

Lets go back to the map colouring example that we just looked at where we had X Y and Z

and the colours red and blue. If I use Dechter’s notation, then we revise XZ with respect to Y.



I  will  get a network where you don’t have (b, r) and (r, b) in Rxz. So I’ve changed the

constraint  graph.  This  did  not  happen  when  we  did  arc  consistency.  When  we  did  arc

consistency we had changed domains and domain changing doesn’t change the graph because

some values just vanish from the domain but when you do path consistency then you may end

up adding edges to the constraint graph. So originally what was seen as a universal relation is

no  longer  a  universal  relation  and  now it  has  become a  equality  relation.  Earlier  in  the

problem statement we said that you can choose any value for Y and any value for Z. That was

in  the  problem  statement  but  as  we  think  about  the  problem  a  little  bit  or  as  we  do

propagation, we end up inducing a constraint YZ and it says that the value you choose for Z

must the same as the value you choose for Y. So we have added a constraint to that. So we’re

changing the constraint graph.

As we look at algorithms for search we will see that the complexity of those algorithms will

depend upon how many edges are there in the constraint graph. We saw that for AC-3 that

property was true and it’ll also be true for some search algorithms that we will see later. So

there  are  two things  happening  at  the  same time.  As  we  do propagation  or  consistency

enforcement networks are becoming tighter and tighter. They may express the same solution

but the networks are tighter which means that they have a smaller number of constraints

between them. The number of edges in the constraint graph may increase and sometimes

there is a trade-off that some algorithms may become more expensive.

(Refer Slide Time: 28.24)



Let me try to give you a flavour of what’s happening here by looking at another example.

Let’s say there are four domains –X, Y, Z and W. Let WZ be a universal relation. I do revise

XY with respect to Z which means I am looking at every edge between X and Y and seeing

whether I can find a point in Z. If there is a point in Z then I’m happy that I can keep this

edge between X and Y but on the other hand if I see another edge between X and Y which

doesn’t have a point related in Z, then I will delete that edge. Notice that when I am making

this call to revise I’m revising XY, so I’m only revising the edges between X and Y.

So if you see there was one edge which got deleted because there was no point in Z for that

and the remaining would be as it was. Let us say the remaining thing has only two points and

they are connected as shown, then the edge has been deleted. So there were just two edges

and if I now do revise XY with respect to W, then I will end up with only one edge.

So at the end of these two calls to revise, I would be left with only one edge between X and

Y. The other two edges have got deleted. One got deleted in a call with respect to Z which is

shown and the second one got deleted because of a call with respect to W because it couldn’t

find a triangle in W. So at the end of these two calls to revise, essentially the only relations

that will survive are the two triangles and if I do more calls other edges will vanish.

So essentially in path consistency the edges start vanishing from the graph and at the end

every edge in the matching diagram will be extendable to every other variable with a triangle.

The simple algorithm to do that is PC-1, which is similar to AC-1, which is brute force and

simply says that as long as no relation is changed, or as long as some relation changes call all

combinations of revise. In the next class, we’ll take this up again and then we’ll look at an

improvement which is analogous to AC-3 in which we do selective calls to revise and we’ll

try to analyse the complexity of both revise three as well as the PC-1 and PC-2 algorithms.
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