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We are looking at constraint propagation and in particular we are looking at arc consistency.

We want to now look at the algorithm called AC-4 which keeps data at the value level. For

every value a of every variable X, for every variable Y it is related to, it maintains a counter.

We will call this a counter and it’ll be indexed by the variable name X, the value that we are

concerned about which is a and a related variable Y. When we say related we mean that it is a

constraint. There is an edge between X and Y essentially. It maintains a counter XaY which is

the count of support a gets from Y.

That’s the basic idea behind algorithm AC-4. You have this structure called counter and you

have one number for every value in every domain in the network. So you can see that the size

of the structure is going to become quite large. So for every variable X, for every value a, you

maintain  a  count,  for  each  other  variable,  of  how many supports  it  is  getting  from that

variable.

The  idea  is  that  if  the  count  becomes  0,  then  we  have  to  delete  a  from D(X).  This  is

propagation happening. Decrement the counters of all values in all variables supported by a

to which a is one of the supports. That’s the basic principle. That’s the basic idea behind the

algorithm AC-4 that you maintain a counter for every value and keep track of how many

supports  from each other  variable it  has.  If  from any variable,  it’s support becomes zero

which means there is no value in the other variable which is related to this value a then

you’ve to delete a. That’s my definition of arc consistency. That’s what revise would have

done but  now we delete  a  and we decrement  the counts  of  all  those values  in  all  other

variables that a was contributing to. So the next question is, which ones? How do you do this

all values in all variables essentially?

So this idea is straight forward. You maintain another data structure. Maintain a support list.

We will call this list S like most people do. S is indexed on the variable and the value. It’s a



list of all those values that are related to a. So it’s a list of all variable, value pairs such that

<a,b>  Rxy and b  D(Y).ϵ ϵ

So these are two principle data structures that you want to maintain. One is a counter for

every value that is there. The counter will tell you whether the value is supported or not and

the counter is for each value, for each variable it is related to. So if variable X is related to3

other variables, then any value from X will have 3 counters. If any of them becomes zero,

we’ve to remove a from that and then we have to worry about what a was supporting. So we

have this structure called support. What was a supporting? It’s support (X,a) and it’s a list of

all values in all variables whose value it is supporting.

Once we know this, what do you do? For each of these values, you decrement the counter

YbX. So you know which is the variable because the support array is giving you a pair, (Y,

b). It’s giving you all such values. For each such value you say that the support it was getting

from X has been decremented essentially. And then of course the rest of the algorithm is

basically built around this that you keep track of counters. As soon as a counter becomes zero

you delete it.  You don’t delete it immediately. You put it in a queue in which they’ll get

deleted because more than one counter could become zero at the same time. You essentially

process elements one by one.

So what are data structures that we’re using? One is the counter, one is the list and the third

one is a queue of pairs of the kind (X, a) which are to be deleted. And when we delete it

essentially we’ll prune the domain and we will go and do the decrementing process, looking

at the support S. Let’s now try to describe the algorithm. We’ll do it at a relatively high level

and you can fill in the details.
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The first phase is to initialize. Before you even start doing anything, you have to build these

structures. You’ve to build these counters for every value because every value is related to

more than one variable and you have to build the support structure S for all edges, XY, for

each value a of X and likewise for the other variable.

You count the support from Y and when you’re looking at Y you count the support from X.

Suppose you want to set up (X, a). Just to emphasize, here we get values from Y essentially.

So whichever elements a is related to, we get a pair. So out of (Y, b), (Y, c) and (Y, d); for

whichever a is related to we’ll get the counter and this is only for one edge. Likewise when

we do for every edge we will get the whole picture.

What is the complexity of this? When you say all edges, this contributes a factor of e and then

you’re counting the support from Y, this will give you a factor of k2. So it gives us ek2. So

simply setting up the data structure is order ek2 essentially. And that’s also the space required

for S. So not only you need ek2 time to set up the initial structures of counter and support, you

also need space because for every pair of related values there are two entries. If a in X is

related to b in Y, there is one entry in S, (X, a), which is the value (Y, b) and correspondingly

there is another entry in S of (Y, b) which is the value (X, a) essentially. So there are all these

ek2 entries. So it requires a space of ek2 entries essentially.

After this has been done, if any counter XaY becomes zero, there may be values which have

no support. There may be a value in X which has no support from the variable Y so it’s

counter will be zero. We simply add it to the queue. Let’s call the queue as list. It’s a list but it

basically doesn’t matter in what order you process the pairs. So you can call it a list.



This is the initialization phase. For every value, you have a counter from every other variable

and you know which values don’t have any support so you know which values have to be

deleted. That will happen in the propagation phase.

The second phase of the algorithm is propagation which we’ve already discussed. What it

says is, for each <X,a> in list, first you delete a from its domain and then for each <Y,b> ϵ

S(<X,a>), decrement the counter value for that variable. So, for the pair <Y,b> we got from

the support list for <X,a>, it basically says that there is an edge from a in X to b in Y. This is

all that it maintains. So if we’ve to delete a, the support Y was getting from the variable X has

become less so decrement the counter by one and if counter becomes zero, then add <Y,b> to

list.

Try to imagine the matching graph and see what’s happening. You have some value a in X

and there is another value b in Y and there is an edge between them. The edge is basically

what the array S stores. It says a and b is an edge. It stores it for a as well as for b. It indexes

on both the values. If a had an edge from c from some variable Z and you deleted c from Z,

then looking at the array S for <Z,c>, it would have told us that <X,a> was related to <Z,c>

so you’ll decrement the counter for <X,a> and if this counter becomes zero, then we will put

it in the list or queue and at some point in the future we will delete this a from the domain of

X. Then because the S structure for X told us that a was related to b, you would be following

that link to b and decrementing the counter for b. That’s what the propagation phase is doing

essentially – decrementing the counter.

Essentially you’re following the edges in the matching diagram as opposed to AC-3 where

you were following the edges in the constraint graph. So if there is an edge and one end of the

edge vanishes then you decrement the counter at the other end of the edge. And if the counter

becomes zero you delete that.

What  is  the  complexity  of  this  propagation  part?  What  is  the  worst  case  complexity?

Obviously, you can delete only one value at a time. If you look at these S vectors, you may

end up deleting whatever is stored in them. The space required for S is actually equal to the

sum of all counters. If you just think about this a little bit because each counter tells you how

many supports it has from another variable. So if you look at every counter from all other

variables and count the supports you know how many elements are there in S. In the worst

case you will delete all of them one by one. In the worst case, in every cycle of propagation,

you will delete only one element. So you may require ek2 cycles, which is the size of S



essentially. So you can see that the overall complexity of this is ek2, which is better than AC-3

which was ek3.

It turns out that in practice people have found that AC-3 often performs better than AC-4 even

though AC-4 has a worst case complexity which is smaller than AC-3. The reason for this is

that the best case complexity of AC-4 is also quite high. Simply setting up the initialization

phase and setting up all the data structures requires ek2 time which is not the case in AC-3.

(Refer Slide Time: 23.48)

So here is what we have seen about arc consistency. We have looked at three algorithms AC-

1, AC-3 and AC-4, progressively looking at finer and finer granularity level and giving better

and better worst case complexity measures essentially but the next question we want to ask is

what does arc consistency imply? How does it help to make a network arc consistent? For the

moment we’re looking at only binary constraint networks but we can extend the idea of arc

consistency to higher networks.

So the simplest question you might ask is does an arc consistent network, and I will just

restrict myself to BCN for the moment, always have a solution? If you remember, the reason

we had got into consistency is because we want to come down on search space but does it tell

us anything more than that?

Unfortunately  arc  consistency  for  binary  constraint  networks  is  not  enough  to  tell  you

whether there is a solution or not and there is a very simple example which illustrates this. If



you have  a  map  colouring  problem with  red  and blue  as  the  two allowed colours  three

touching countries, then if I draw the edges you can see that every value in every domain has

a value in the related domain.

You see every value has got a value in the related domain. So this means it is arc consistent

but does it have a solution? If you look at this problem you’ll see that there is no solution.

You have two colours and three touching countries. You can’t find a solution to this. We will

see as we go along that the amount of consistency that you enforce will sometimes be enough

to tell you whether there is a solution or not but unfortunately arc consistency is not enough

in this example to say that there is a solution. What you need is the next level consistency

which we would call as three consistency. Arc consistency was two consistency but if we

have  three  consistency,  which  is  also  called  path  consistency,  we  will  see  that  path

consistency will tell you whether solution to the map colouring problem exists or not. Or at

least to this network.

There is also a notion of generalized arc consistency which says that if the network is more

than binary, if there are ternary constraints or higher order constraints do we have a notion of

an arc consistency? There is one notion but I will describe it sometime later as we go along.

So in the next class when we meet we will look at the notion of path consistency which is the

next level of consistency.
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