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We are looking at constraint propagation and we’re looking at i consistency. So let me recall

the  definition  of  i  consistency.  It  says  that  any  partial  solution  of  i-1  variables  can  be

extended to i variables. A partial solution is an assignment which is consistent with all the

constraints it covers. We say a network is i consistent if we take any partial solution of i-1

variables, we can extend it to i variables.

The simplest form is 1 consistency which basically means you can give a value to the first

variable, whichever you choose. And what do we mean by saying you can give a value to

them? It means you can choose any value, which has an implication that a network may not

be one consistent if there are unary constraints in the network. For example, if there is a

variable X and you say that there is a constraint X < 3 and if the domain has {1, 2, 3, 4, 5},

then it’s not 1 consistent because you cannot choose 4 or 5 because those values are not

consistent with the constraint that it’s value should be < 3.

So making a network node consistent, this is also called node consistency, making a network

node consistent is simply looking at all the unary constraints and deleting whichever values

are there in domains which don’t respect that constraints. It’s a very simple algorithm. Just

look at each domain and see if there is a unary constraint which that value doesn’t satisfy and

delete those values.

Then the thing that we focussed on was 2 consistency or arc consistency. It says that any

assignment of one variable can be extended to an assignment of two variables. What does it

mean in terms of matching diagram? I’ve drawn the constraint graph in red. The matching

diagram basically  says which variables are related to which variables.  Remember we are

talking about the binary constraints. What arc consistency says is that for any value in a

domain, it must be connected to one value in each of the domains it is related to.



The black one is a matching diagram. The red one is the underlying constraint graph and arc

consistency says that for any value that you pick, there must be a corresponding value in the

related domain.

So we have looked at two algorithms AC-1 and AC-3 and for every edge for both sides, at the

end of the edges, they prune domains appropriately. For example I have X and Y, Dx = {a, b,

c} and Dy = {1, 2, 3}, and my matching diagram says that a is connected to 2, b is connected

to 2 and a is connected to 3. Then after AC, after making it arc consistent, we get Dx = {a, b}

and Dy = {2, 3} because we delete the value c from the domain of X because it doesn’t have

a corresponding value in Y and we delete the value 1 from the domain of Y because it doesn’t

have a corresponding value essentially.

So that’s what propagation does. It basically prunes the domains of every variable. Now you

can see that pruning a domain is kind of equivalent to inferring unary relations. Now instead

of saying that domains are pruned, you could have said I’m inferring a relation R on x which

say that {a, b} are allowed and I’m inferring a relation R on y which says that only {2, 3} are

allowed essentially. And then of course you can make it node consistent and then c and one

will get pruned but the larger point that I want to make here is that whenever you achieve i

consistency you infer a relation of arity i-1 essentially. So whenever you do arc consistency

we infer a unary relation and when we see higher order consistencies we see that we infer

appropriately the relations. We’ll see this but this is a property we can easily observe for arc

consistency.
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So just a quick recap of the algorithm that we looked at. We saw AC-1 which is essentially

brute force. It says, for each edge X Y, revise domain of X with respect to domain of Y

looking at the relation Rxy and the other way around. Revise domain of Dy with respect to

Dx again looking at Rxy and do that for each edge. And you put this into a loop till  no

domain changes. So this is rather a very brute force process.

And then we came up with a new algorithm which was AC-3 which did not do this brute

force process that in every cycle you look at each edge. What AC-3 did was that if you have,

for example, some random constraint graph that I’ve drawn with 7 variables - X1, X2, X3,

X4, X5, X6 and X7, and supposing you do revise X5 with respect to X6 with respect to the

relation R56, if D5 changes, then process X2 with respect to X5 with R25. 

So essentially if there is a change in X5, i.e. if D-five changes then just simply worry about

its related variables and only do revise for them with respect to X5. So obviously you can see

that it is much better than AC-1 because it will not call revise unnecessarily all the time and

it’ll only do it for those domains which have got affected. If you remember the complexities

of this, it was O(nek3) cube. We had done some reasoning for this. k2 of this came from the

revise operation and the rest comes from how many times you do the looping and so on. e is

the number of edges.
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Now it turns out that AC-3 also may be doing too much work. Let me give an example.

Supposing you have X, Y and Z and Dx = {a, b, c},  Dy = {1, 2, 3} and Dz = {A, B, C}. They



don’t have to be different domains but I’m just using different names here. a is related to 1

and to 2. b is related to 2, c is related to 3 and let’s say 2 is related to A and 2 is related to B

and 3 is related to C essentially. So in this example, after revise Dy with respect to Dz with

Ryz 1 is deleted from Dy. That means Dy has changed and this means AC-3 will call in this

example revise Dx with respect to Dy with respect to Rxy.

But if you look at this example, you see that this call is not needed. Why is it not needed? It’s

because even after you have deleted 1 from Dy, a does not lose its  support.  So 1 was a

support for a or 1 was related to a. So we’re worried that a must have lost its support because

we’re deleting this  element  1 from Dy. We’re worried that  Dx has a value a which was

supported by this 1 and because we are deleting 1 it may have become inconsistent.

But if you observe, a has another support which is two. It means Dx is still arc consistent with

respect to Dy and the call that AC-3 makes is unnecessary. So essentially what we want to do

is to try and look at an algorithm which will maintain its data at the value level and not at the

domain level. What AC three says is that if you’ve revised a variable Y with respect to a

variable Z and the domain of Y has changed, or it has been shrunk, then any variable that was

related to Y is in danger of becoming inconsistent and therefore just to be safe make a call to

revise, in this example, XY. And if you remember the AC-3 algorithm it maintains a queue. It

would’ve put the pair XY into the queue.  But there are times when this is not necessary

essentially as illustrated by this example and in such a situation we can try to find a more

optimal algorithm.

When we talk about complexity, you can see that AC-3 is already O(ek3). A simple check

whether an edge is consistent itself is of O(k2) because you have to look for each value of one

variable whether there exists other value in other variable and then you’ve to look at all these

edges at least once essentially. So can one actually find a more optimal algorithm? It turns out

that yes indeed we can and that’s the algorithm that we want to look at next.

That  algorithm  is  called  AC-4  and  what  AC-4  does  essentially  is  keep  track  of  the

information of support for each value. If you keep track of how much support each value has,

then  you  know  whether  to  propagate  the  change.  So  essentially  this  is  a  propagation

algorithm. We will see that whenever a value is deleted, has one of its related values in the

other  domain  become  orphaned  or  not.  By  orphaned  you  mean  it  has  no  support  left

essentially.



In this particular example, you can see that when 1 is deleted from Dy, a is not orphaned

essentially. a is not orphaned and the other values are not deleted from Y. In this example

only one value is deleted from Y so anything that was connected to that value was in danger

of becoming support less but in this example because a has two supports - 1 and 2, a is not

orphaned.

So the algorithm AC-4 that we will look at next essentially counts for each value, for each

other variable, how many values are supporting it? So in this example a is supported by two

values from Y, b is supported by one value from Y and c is supported by one value from Y

and as and when we delete values,  we will  decrement appropriate counts and if  a count

becomes zero then we know that we have to delete that value and if we delete that value then

we have to worry about whether to propagate that change or not.

So the level of granularity at which AC-4 looks at the constraint network is at the value level.

It’ll check if deleting a value is changing something in my network or not. Whereas AC-3

looked at constraint graph level. It said that if a domain is changed, is any connected domain

likely to be affected? So it takes the worst view and says that must be affected so let’s just

call revise essentially.

AC-1 just looks at the network as a whole. It says, if some domain has changed, just call all

revise combinations all over again. So that was really brute force. AC-3 looks only at the

constraint graph level and tries to decide which revise to call and AC-4 will delve further

down into the value level and then decide whether to do something about it. And we will see

that AC-4 does not actually call revise because revise itself is O(k2).

Revise X with respect to Y says for every value of X, check whether there is a corresponding

value of Y. So it becomes O(k2) already. AC-4 will not need to do that. It will simply say

because of the value that I’m deleting, in this example 1 from the domain of Y, has a related

value become unsupported? So it’ll only look at the value level essentially. And as we will

see this will allow us to bring down the complexity of the algorithm to O(ek2) but you must

also try to imagine what is the best case complexity. So far we have been talking about worst

case  complexity.  So  whenever  you  say  revise  is  O(k2),  we  are  assuming  that  for  every

element in the first variable we will look at all the elements in the second variable. So that’s

why k+k+k+k… k times so that will be k2 essentially.

In the best case for every element the first value we look at would be related so revise will

become O(k). That’s the best case but we have been talking about worst case complexity and



the algorithm AC-4 has a worst case complexity which is better than AC-3 and we will look

at that in the next class.
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