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So welcome to this course on constraint satisfaction problems. This is third in a series of courses 
that we have done in Artificial Intelligence. And we also often refer to this sometimes as Constraint 
Processing. Okay, at the very outset let me start off by giving you the references, the books for this 
course. So, there are 2 books essentially, one is a book by this name constraint processing by Rina 
Dechter. I have a copy of this book here and I think we have a copy in the library. And from this, we
will do chapters 1 to 6 and maybe chapter 12, and maybe one or two more essentially. So that's one 
textbook and the second book that we will use is my book which is a first course in AI, from which 
we will use chapter 9, only one chapter, but it basically covers most of the stuff that I want to cover 
in this course so that's my book here, and we will use these two. By and large, most of the material 
we cover will be from these two books essentially. Okay so, when we talk of artificial intelligence, 
essentially we talk about problem solving, right. And we have already done 2 courses on this topic 
they are available online on the NPTEL site. The first course was problem solving using search and 
essentially it's a method which uses search techniques to find a solution essentially. And the second 
course was knowledge representation and reasoning, and here the focus was on reasoning and in 
one course the focus was on search essentially. But in general, when we talk about problem solving 
in AI we are interested in general-purpose methods, or methods which can be applied to many 
different problems and so on. And from that point of view, constraint satisfaction problems is a very
good way of formulating problems because it is a very uniform way of doing things and once you 
have formulated a problem as a CSP problem, so we will use the term CSP.  Once you have 
formulated a problem as a CSP problem, then you can just take a standard CSP solver and use that 
to solve the problem essentially. And the nice thing about CSP is that it combines both these 
approaches, or it allows you to combine both these approaches, so in a sense that you can do search 
to find a solution and we will shortly define what do we mean by a CSP problem, or you can even 
do reasoning of the kind we did in, for example, logical reasoning, making inferences, and saying 
that if this is true and this is true then this is true. Both kinds of things can be nicely combined in 
one formulation which is the CSP formulation.

So let me try to illustrate that. So, henceforth we will refer to this as CSP. Now the basic idea of 
formulation here is that as a set of variables. That's a very high level way of looking at things, that 
when you talk about constraint satisfaction problems, you are essentially talking about at a set of 
variables essentially, and which can take values from their own domains. Okay so basically we are 
saying that each variable will have its own domain and you can get a value from its domain 
essentially. So that's a very high level way of looking at things essentially. What is interesting here 
is that we have this notion of constraints. So a constraint is a restriction on the combinations or on 
some combinations combinations of values that the variables can, that the variables can take. We'll 
formalize this notion shortly as we go along essentially, but this is really the basic idea behind 
constraint satisfaction problems is that you formulate the problem as a set of variables, each 
variable can take values from some domain of its own and a constraint or a set of constraints. Each 
constraint is a restriction on the combination of values that the variables can take, and when you 
solve CSPs, it basically means assign values to all variables such that all constraints are respected.
The term which we use is satisfied, but you can say respected, essentially. So you can see that the 
problem formulation simply says that you have a set of variable and each variable can take some 
values from its own domain and there are set of constraints on combinations of values and as long 
as you can assign values to all variables which satisfy all the constraints then you have a solution. 



We are not talking about what is the methodology for finding the solution. Now clearly there are 
different ways of doing this. One way would be to use search, just try all combinations and just 
keep testing all constraints. That would be basically a search based approach. But fortunately, this 
formulation allows us to do also reasoning essentially. So that's a nice thing. You can combine 
search and reasoning. I would like to illustrate that with a example. But you must keep this in mind, 
that basically this is what a CSP is, a set of variables, and a set of constraints and then you have to 
find values for the variables from their constraints.

So let's look at an example which is from the domain of numbers. And I want to essentially 
illustrate the fact that you can combine reasoning with search essentially. So cryptarithmetic puzzles
are a class of puzzles where you are given some mathematic equation, but you are not given the 
numbers, you are instead given placeholders for those numbers. And they kind of look interesting, 
so they are interesting and you what you have to do is to find a solution to that. So examples of this,
for example, you can say that so each of these letters, so domains for all variables is the digits digits
upto 9 essentially. So which means for each of these letters, each of them is a variable. You can, you
need to find a value for, from its domain and we are assuming in this problem that all domains are 
the same which is the letters from 0 to 1, 0 to 9. And then you can say I want to add these numbers, 
and answers should be, Okay, so essentially we are giving us a addition problem, but we are not 
telling you what the numbers are and all we are saying is that each letter is a variable, values must 
be distinct. That's an additional constraint which I'm not stating explicitly here that each each 
variable must get a different value. You can't get the same value. Because if you are allowed to give 
the same values then all you would do is to give zero to everything and then you would have a sum. 
So what do you mean by saying you would have a sum? There are constraints which I'm not writing
here, but these are basically says that if these letters were replaced by the numbers, then the sum 
would be arithmetically correct essentially. So whatever I plug in for S and E and N and D and so 
on, what I will get is a valid sum, summation, addition problem essentially. So basically the task is 
to find values for that essentially. So how do we solve this essentially? Obviously, we can see 
solution for this. One is search, and you can do a brute force search essentially, you can say S is 
equal to 1 then 2 then 3 and so on. And then E is equal to one then two then three. I'm just writing it 
in a cryptic manner, when you say S is equal to one then E cannot be 1 and so on, and all those 
things are there. And you can just try all combinations and see if actually the sum works out or not 
essentially. The other approach is by reasoning. Okay so what is the kind of reasoning we can do? 
We can say that, for example, this M must be 1. Why? Because you know that's the only way you 
can get this value. Of course there are some hidden variables which I have not spoken about but let 
me take another example and we can try to illustrate that completely essentially. So another 
example is this, 6 plus, these are interesting because of the fact that the English reading of this 
problem also is quite meaningful essentially. So when you say send plus, send more money, it's like 
a meaningful sentence. Or if you say 6 plus 7 plus 7 is 20, then it is a meaningful sentence. So as I 
was saying, what you need here is some hidden variable. So there must be something here which we
call as carry variables and they may take values of between 0 and 1. But we are not worried about 
that. Of course they will take values like 0, 1 or 2 also in this case. But we are not really concerned 
about that. We want values for these letters, six, s i x s e v e n, and so on, so that the sum is correct. 
That's the basic constraint which I am not expressing. So let me take one more example, and we'll 
try to solve this as we go along. So, this is E. So let's create placeholders for these where the values 
will come in. So we want values for each of these. And we are also allowed to have carry for these. 
So let's try to solve this online by using a reasoning approach and we try to fill in whatever numbers
we can somehow argue. So just as we said that M must be one, here we can say that A must be 1 
because that's the only way when u add T plus P, you're getting a carry which is coming as a letter 
A. And so therefore the only carry that you can get by adding two integers is 1, so the maximum we
can do is 8 plus 9 is 17 and you can't go beyond 17. So that carry will be always 1. So we know that 
A is 1. And once we know that A is 1 and we know that this carry is 1, and then we can fill up a 
value for A 1 here also. Because whenever there is a A, it must be the same value essentially. Okay, 



now the fact that we added something to T and got a P means that there must have been a carry 
above that as well. And then what can P be? P can only be 0 essentially okay. Because you're adding
1 to something and you're generating a carry. So you can only add 1 to 9 to make it a two digit 
number. If you add 1 to 8 you will get 9, and you won't get a carry so you won't get this thing 
essentially. So we can figure out that P must be 0, so we fill in 0 here, we fill in 0 here, and 
consequently T must be 9. So now we know that 1 plus 9 would have got us 10 and then this 1 
would have got carry and that is the A there. So once we know that T is 9, we can fill 9 here 9, 9 
here. And then we must know that E must be 8 as 9 plus 9 is 18, and this must be a carry here, 
which is 1. And then we can see that 1 plus 1 plus 1, so this must be 3, L, and E is 8 here and 3 does
not generate a carry, so this carry must be 0. And then we can figure out that the only value that H 
can take is 2 because that will generate a carry. So this particular problem we managed to solve. So 
what is this problem? This problem says that 819 plus 9219 is 10038. So this is a solution. And the 
problem was eat that apple essentially. Now in this example what I try to illustrate is the fact that 
you can use reasoning to arrive at the solution. We didn't try out all combinations for values for the 
different letters. We can do that also and that is another approach to solving this problem essentially.
Not only that, in this particular example we could solve the whole problem using reasoning. If we 
had got stuck on the way, or somehow if we could not figure out what the next thing is, then we 
could resort to search as well essentially. So you can do reasoning part of the way, then search, then 
so on and so forth essentially. You can see that there are many problems like this. So another 
example is Sudoku. So typically one expects to do more reasoning on sudoku. And that's the whole 
exercise of doing the thing, otherwise if you just give it to a small computer program, it will solve it
within half a second for you essentially. So the whole thing is that you can combine these two 
things essentially. So what I want to do is to give you a few more examples to give you a flavor of 
the fact that you can model different kinds of things as constraint satisfaction problems, and then 
after that we will kind of move over to solving CSPs essentially, algorithms for solving CSPs. And 
algorithms for solving CSPs will be a combination of these kinds of things that I'm saying, search 
and reasoning. In the language of constraint satisfaction we don't say reasoning so much, we say 
propagation essentially. So there is this whole field called constraint propagation, that you can 
propagate restrictions to other variables and in that process we can do that essentially. So here for 
example, in this eat that apple example, we started with a restriction on A, the leftmost A in the 
answer. And then we propagated that, that we said that because A is 1, T must be 9, and E must be 0 
and so on and so forth essentially. So this kind of things we will do essentially okay.

So a CSP, a CSP problem is basically defined as a triple <X, D, C>, where X is a set of variables, so
let's say x1, x2, upto xn. And D is domains for those same variables. So there must be d domains, 
sorry n domains, and C is a set of constraints. So let's say we have some k constraints where each ci 
is made up of two things called Si and Ri. So this is basically the formalization of this problem . We 
will come back to the examples soon. Where Si is the scope of the ith constraint and it's basically a 
subset of X. So some variables on which the constraint is defined and Ri is a relation which is a 
subset of X1i  X2i  Xsi, if you can make sense of this. So essentially, I should say modulus Xsi 
there. So if the scope has, let's say P variables, so if Si is equal to P, then we are saying that Ri is a 
subset of cross product of X1i, X2i, XPi essentially. Because there are P variables, so we take the cross
product of that and we have the scope of that. So essentially this is a formulation of a constraint 
satisfaction problem. Where the scope of a constraint tells you how many variables are participating
in that constraint and the relation of the constraint, the actual constraint, is the relation on the 
variables which are participating in that constraint essentially. Now, we want to look at some 
restriction of this very generalized formulation of a CSP, or what is the kind of problems that we 
will address. But before we come to that let me define a special class of CSPs which is called a 
binary CSP or BCSP. And in binary CSP the basic thing is that scope is less than or equal to 2, for 
every variable scope is less than or equal to 2 essentially. Which means that upto 2 variables 
participate in a constraint. So very often we will refer to, in binary CSPs, we will refer to scopes as 
follows. So for example we can say S12 or S34, so what this means is that it is a short form x3 and x4 



belongs to S34. So this indices of variables we will use directly. Or we can, yeah, so something like 
this essentially. And the class of binary constraint satisfaction problems is of particular interest 
because there is a large number of, large set of algorithms that have been developed for that 
essentially. So I will stop with this lecture and in the next lecture we will start looking at some more
examples of CSP and we will try to restrict the kind of CSPs that we will address in this course 
essentially.


