
 Information Security 3
Sri M J Shankar Raman,

Consultant Department of Computer Science and Engineering,
Indian Institute of Technology Madras

Module 40
Shell Signals and Traps

Welcome to this session on shell programming, in this session we will look into an important

concepts called signals.

(Refer Slide Time: 00:28)

We’ll also see how to trap a signal using the trap called inside the shell so before we move into

how to use the trap called; let’s try to understand what is a signal? You would’ve heard about a

concept of inter crossing, when in one of the earlier classes. So since signals are software in traps

that are sent to a program dedicating some important condition, for example you could have a

floating point error that occurs when you are doing some mathematical calculation, for example

divide by zero.

So under such circumstance the program has to terminate and before it terminates it actually to

indicates to the parent that something has gone wrong and hence the program has to be

terminated, this could be because of an abnormal condition, you could also generate signals to

indicate this activity that means signals may not generally be rised by the program themselves,

you can even code to generates signals, for example alarm is a call that can be used to generate

an alarm signal you want a program to do some activity at some specified intervals of time, so I

that case what you do is you set an alarm, it’s just like you set an alarm and try to wake up in the

morning, so the same thing a process can also set an alarm and it can either wake up itself or it

can wake up another process, so such things can be done in shell programming.

(Refer Slide Time: 02:20)

Now the question is how do we handle signals, ok so you Unix operating system allows very

many ways of generating signals ok as I told you one way is to use the alarm call, the other way

you can use this the kill system call or the kill command in the shell and so on, we will be using

the kill command in our program, but before we go and just talk about traps and kill command

etc, let’s also understand that you can also have user define signals, for example I want to

generate a signal on my own due to specific conditions, ok.

So the Unix operating system allows you to generate your own signals and they have defined a

certain values for the signals, ok which is listed if you go to the man page of signal it will tell

you what is the signal number and what is the corresponding signal that you can correspondent to

that number.

(Refer Slide Time: 03:25)

 So here are some examples of signal and their numbers ok. So signal number 1 tells you that it is

known as SIGHUP, ok see it tells you that hang up detected on controlling terminal or death of a

controlling process, so likewise if you see sigh 2 sigh 3 sigh 8 is of important because that talks

to you about a floating point exception and that sigh 9 is the kill signal, then if you get a

segmentation fault that is invalid memory reference, you’ll have SIGSEGV then if the pipe is

broken.

For example you are communicating from one process to another process and during that

communication the communication channel breaks down, so under such circumstance you’ll get

something known as the SIGPIPE, and you’ll also as I told you it’s an along signal, ok along

signal you can set a timer to a specific period milliseconds or seconds or whatever it is, and at

that point of time once that time is over, a signal will be generated known as SIGALRM, and the

you can have a termination signal.

As discussed here are user define signals ok in general they are given numbers 30 10 16 31 12 17

and so on I mean these are numbers I mean I’ll tell you how to use these numbers in our

program, usually ok the signals are responded to by the program or the shell script by either

dumping the process state which we call as the core dump or the process gets killed, I mean or

terminating the process.

So one of the examples as you’ve seen is the control C, control C is a very direct example of how

you can send a signal to a process and exit the process, ok similarly control Z actually puts the

process to sleep and so on, so let us see how to handle these type of signals within a shell script,

ok?

(Refer Slide Time: 05:18)

Let us try to understand the working of signal using an example.

(Refer Slide Time: 05:27)

So let’s take this program called infinite.sh.

(Refer Slide Time: 05:30)

So in this program let’s see what we are doing as usual line number1 tells you that we are

suppose to run this program using a bash shell and then we are checking for the number of

arguments to this program and finally we are assigning num to be the first argument and then I

am echoing the process id, and then I am just counting or decrementing the count from num up

to say 1 and if it becomes zero, I’ll just exit but while doing it I am just sleeping so let us try to

run this program and see what happens.

So essentially if you see from the logic we see that this program will actually count from

whatever number you give and it will count up to 1 and then finally when it comes to zero it

exits, ok and while before counting or printing any number it sleeps for one second, so let us try

to see how this program works, ok?

(Refer Slide Time: 06:26)

So I run this program so I’ve to give it some values and let me say I give a value of 15 so this

program goes on counting so another thing this program also does is it prints this process id, if

you remember we can print the process id using the dollar dollar symbol so we are printing the

process id, why you are printing the process id we’ll get to know shortly ok, so this is a very

simple program.

(Refer Slide Time: 06:55)

Now what we will try to do is when I run this program, suppose I want to send a signal to this

program so what I will do is I’ll just run this program to the background and then what I’ll do is

I’ll try to get the process id of this process, I mean the program that is running and then I’ll try to

kill the process ok, so what I do is I am getting the process id should be 13611, so what I’ll do is

I’ll type the command called kill minus s space minus s and then I’ll give a number 9 and then

I’ll have to give the process id, unfortunately here the program is actually terminating before we

even give the process id, that is ok.

We’ll give 13611 so it says no such process because the process already exits, now what we’ll do

is instead of that what we’ll do is we’ll try to count a larger number to ensure that the process is

alive and then we will try to give the kills command ok, so if you look at this this is the way we

are trying to kill command, kill the kill command, ok?

(Refer Slide Time: 07:55)

So let us try to give instead of 9 we’ll give 15, so if you use kill and then minus s, the minus s is

the signal number and then the next you get the process id, so in this way you can actually try to

send a signal to a a process that is running.

So let us now try to run this process and the try to send the signal so this process again we start,

now the process id is 13679 so I type the command kill minus s, I say 15 and then 13679 ok, now

let’s see what happens, see if you . If I send this command so the command that I’ve typed is kill

minus s 15 13679, that command 15 is as user define signal, now the question is once I send the

user define signal ok there is no signal handler in the program in the shell script, therefore what

happens is since the signal handler is not present, signal handler essentially the function you

would like to call in the operating system’s course that was introduction that was given, we’ve

talked about interrupt service routine. This signal handler is similar to a interrupt service routine.

So what we try to do is when I send the signal 15, it has to call the corresponding signal handler

or code and code interrupt service routine and if that interrupt service routine is called then we

can do whatever action we want to do but in our case now since you’ve not defined any signal

handler what happens is the program does not know the shell script does not know what to do,

therefore it terminates with the value of counting at 40. So, now what we will try to do is we will

try to handle this signal ok, so in order to handle this signal so if you look at this what we’ve

done right now is,

(Refer Slide Time: 09:42)

 So instead of 9 I had given, so in this case where we run the program in the background then kill

minus s 9, so instead of 9 I mean we could also give 9 or we could, I wanted to give a command

called 15 ok, so number called 15. So we could give 9 or 15 whatever number I mean if you

remember the previous slide.

(Refer Slide Time: 10:04)

 We had given some numbers so you can give anyone of these numbers and the programs

behavior will depend on what number you give here.

(Refer Slide Time: 10:12)

 So now what we do is once I’ll give a kill command I can instead of the number.

(Refer Slide Time: 10:18)

I can also even replace with the one that is given on this constant, ok SIGHUP SIGINT

SIGQUIT all these things are constant, they are defined to be these numbers and so either I can

give these numbers directly or

(Refer Slide Time: 10:29)

 I can give these constant values, so I will demo it again with an example.

(Refer Slide Time: 10:34)

so what I’ll do instead of giving 15 I’ll give sig usr 1, let’s see what happens, so I am counting up

to this then I say kill minus s sigusr 1 then the process id is 13790, so this gets killed so that 15

actually refers to so if you look at this, this is what I gave so the 15 count is equal to sig usr1, so

sig usr1 is define to be 50, so in this way since there is no signal handling routine in the shell it

gets killed, now let us look at the second program, So where we try to introduce the trap

command.

(Refer Slide Time: 11:15)

Now once I had given the kill minus s sig kill, the program terminates you saw that the program

terminates, now the question that we can ask is can the process do something such that it can

gracefully stop after it reduces the signal?, now why should we do some kind of graceful stop, I

mean why can’t that program just terminate, usually if your program using SIG language you

know that whenever you get some memory or some resource from the operating system you

should actually return it back you should not be like educational loan from where you buy it and

then you don’t return it back saying that you don’t get a job, ok so in operating system you had to

be very strict, you have to get that whatever resources you’ve got you must return so, and once

you return and then to exit the program gracefully then other processes will not have any

problem. So in general ok, whatever resources you get from the operating system must be

returned under such circumstances this kind of gracefully exiting a program will help, so for

example you had opened some bunch of files and you know that the program is going to

terminate abnormally, so the best way to solve the problem is to close all the filed scriptures,

then log whatever has happened and then exit the program, this is the way of gracefully exit the

program rather than either a dumping core or just exiting the program without any user

information, so the user will be left to wonder what had happened he had written a program and

running it suddenly the program is disappeared.

So those things in order to avoid those problems you’ve to gracefully exit the program, so the use

of signals helps you in gracefully exiting a program in case of an error, so that is the advantage

of using signals, now how do we handle signals, so now that the process gets a signal and then it

gets killed we said that there are two possibilities one it could either dump core or it could just

exit, now how do we handle this condition.

(Refer Slide Time: 13:20)

So here is a way to handle the condition. So you have a command called trap ok this trap

command actually sets or unsets the actions taken when a signal is received so the trap command

actually enables or disables a signal handler, so let us put it technically we’ll let’s say it like this

so here is an example I mean the one that is seen on the blue color ok, so the way to use the trap

command is you use the command called trap and then some function ok and then what are all

the signal names and this function can even be a null function indicating that no are the default

action or no action should be taken when you received these signals, ok.

So here or you have to go back to the default action when you received the signals so, so here is

an example so I’ve defined the function called hello ok and remember this when you define a

function in shell script so once I define the word hello what I do is I just do echo hello world, I

mean this routine is a dummy routine that just prints hello world now after this routine what I use

the trap command, the trap command says that trap ok.

And then it tells you what is the function that must be executed, then it follows up with what are

all the signals for which this function must be executed, say for example this tells you that if I get

a signal 1 or 2 or 3 or 15 then execute the hello function. So it this program simply executes the

hello function ok and then returns, so here is an example so let us look at this example called trap

infinite.sh and then see how it works.

(Refer Slide Time: 15:06)

So let us first understand the program and then we’ll try to make some changes and then see how

the program works

(Refer Slide Time: 15:08)

So here if you see the usage first line tells you that we are going to use the bash shell then I have

lines 2 3 4 5 and 6 which tells you that if the usage is not proper then you have to give the proper

usage and then exit then in line number 8 I define a function called graceful kill, so this function

essentially echoes I am getting killed because you sent me a kill signal.

So it just an cribbing before I I exit, so then I give a exit zero which essentially means this

program will end, once I send the 15 signal ok and so what I do is then what I does is the same

program that I used earlier called infinite.sh so what I’ll do is now I will try to send kill minus s

space 15 to this program so let me try to run this program with some number, ok?

(Refer Slide Time: 16:12)

So I am running trap infinite.sh and I’ll give some number as 50 and then I run it in the

background, then I’ll give the command kill minus s then I’ve to give 15 and then the process id

is 14064 so if you look at this, it is printing I am getting killed because you sent me a kill signal

and because I’ve put a exit statement this program exits.

So with this we can see that whenever I send a trap signal ok or whenever I send a signal the trap

command captures the signal when executes that particular routine that is associated with this

signal and in our routine what we did was we try to print something saying that I am getting

killed because you send me a signal and then we put the exit command therefore the whole

program exits.

(Refer Slide Time: 17:12)

Now let’s try to make a very small modification to this program and see what happens, so I am

editing this file called a trap infinite.sh.

(Refer Slide Time: 17:21)

 So instead of saying that I am exiting let me mask it off and then I am just putting a statement

called return ok, let us see what happens.

(Refer Slide Time: 17:36)

So what we are, now we’ll just try to run this program again ok look at the process id it is 14149

so I’ll do a kill minus s 15 14149 and then what happens is look at this since we’ve put a written

statements, ok what this program does is it says I am getting killed because you send me a kill

signal, but it doesn’t actually get killed, it actually ignores the signal, ok?

(Refer Slide Time: 18:08)

So it takes a signal then it performs certain operations and the process still continues to run

remember when we were doing this running the same program before whenever I sent a kill

signal the program actually died ok because it was not able to handle signal number 15 it didn’t

know what to do, therefore it terminated but now if you see what has happened is that I am able

to received a signal but even after receiving the signal, I am able to ignore the signal and then

continue with my execution, so these are some situations where you might want to ignore user

input, say the user type something and you want to ignore whatever the user types until the

process is done.

So this is usually used in operating systems to mask off any interrupts when you are doing some

critical operations, there is also way to enable signals so in our case what we have done is we

have received the signal and then we’ve try to mask it of f in the sense we behave as if the signal

was not received by putting a written statement, otherwise you could do whatever action you

want to do, so in the next section we’ll see how to disable and enable these kind of signals during

the course of the program.

Thank you.

