
Information Security 3
Sri M J Shankar Raman,

Consultant Department of Computer Science and Engineering,
Indian Institute of Technology Madras

Module 39
Shell Coroutines

Hello there, welcome to this session on co routines. What we will see in this session is how

we can run two programs simultaneously in a shell as well as what happens if I run these two

programs through a script a shell script. So before we go into how to run programs in the

background and how to run it using shell scripts.

(Refer Slide Time: 00:48)

Let us try to understand what is a Coroutine. When two or more processes are explicitly

programmed to run simultaneously possibly they are communicating with each other then we

call them as co routines. So let us take an example.

 We know that if we type a command called ls space minus l and then we type it to grep what

will happen is that it creates two processes the first process is ls space minus l which is

actually a series of system calls and then grep is another process which is another series of

system calls and then these two processes are related through a pipe symbol which essentially

means that the output of process 1 becomes the input of process two, that is the standard

output of process 1 becomes the standard input of process 2.

And here there are two things that are happening one the programs are running in parallel and

two one program is communicating with the other program. Now what happens the shell

what it does is that it waits for both the processes to finish and then it comes out and then user

will be able to type in more commands.

So in this case for example let us try this example and see what happens.

(Refer Slide Time: 02:30)

So here what I do is I put ls minus l and then I put a grep and then I say let us say I put

December I want to search for December. So what is happening is that it first after both the

programs are executed that is ls minus l and grep are executed it returns back to the shell.

Now essentially what happens is that the shell waits for both the processes to finish and then

it comes out. Now let us consider another scenario.

(Refer Slide Time: 03:06)

So in this scenario what we are going to do is that we are going to find out how to get

multiple processes to run at the same time if the processes do not need to communicate with

each other so remember in the previous case what happened is that I gave ls minus l

command and the output of the ls minus l became the input of the grep command. Now let us

say that we do not want such communication to happen that means each process must execute

independently of each other.

So for that what we can do is we can run the processes in the background and for this either

you can use the and symbol or you can use the bg command I mean there are two ways what

you do is you just run the program then to make the process go to sleep and then you type the

bg command and then currently executing process actually goes to the background and then

you can start typing new commands.

(Refer Slide Time: 04:00)

Now the question is so let us try to see how to use the background process. So I have two

programs, so let us say I call them as firstp dot sh.

(Refer Slide Time: 04:13)

So what this program simply does is it just takes initializes value of n to 10 then it goes on

decrementing 10 by 1 so it prints 9,8,7,6,5... and then between printing 9,8,7,6,5... and so on

it sleeps for about 5 seconds.

(Refer Slide Time: 04:30)

Let me take another program which is known as second program dot sh.

(Refer Slide Time: 04:36)

So in this program it is the same logic accept that i sleep for only 1 second so it essentially

says start these two programs then if I start at the appropriate time the second program should

end before the first program and if you run the first program in the background and the first

program in the foreground what will happen is that you will get the shell prompt as soon as

the second program exits.

(Refer Slide Time: 05:00)

So let us try to see what is happening here, so if you look at this I can just say type firstp dot

sh and then I move in to the background so this program will start working the process ID is

26977 and then I can just see what happens with this process ID 26977. So it says 26977 the

most important thing to look at is that the process ID 26977 the parent process is 25047 ok

25047 which is the bash. So parent of 26977 is 25047 so keep this in mind this is very

important because this is where we are going to explain so something so now again coming

back so let us now try to let this program end so that we will now run both the programs in

the background so both the first program and the second program.

(Refer Slide Time: 06:00)

So this program is ended so we will run the both the programs in the background so first dot

sh is run then I will also run second dot sh. So what happens is that the second program dot

sh will actually finish before so it starts 9,8,7 so it goes very fast so it finishes before the first

program. But then you start getting the shell prompt so now I can take a look at the shell

prompt and then (())(06:30)for first dot sh so then the first program also exits and so on so

what we can do is so the first program is executing so if you see the first program is running

so idea is that these two programs are working independent of each other. So this is an

example of a Coroutines.

Now let us go back and if you look at what had happened see if you look at this if you look at

this program 26977 ok and the bash shell was here so the parent shell was here ok. Now and

your parent shell was live when I say live when I say the parent shell was live you had a

program that was working on a foreground you had a program that was working on the

background and both came out of the same shell.

Now let us consider a case where we put these two programs in the form of a shell script. So

let us consider the case where we put these two programs in the form of a shell script.

(Refer Slide Time: 07:42)

 So something like this ok. So in this case what happens is when I run this program this

coroutine dot sh program what will happen is that I am trying to put the first program in the

background ok and then I am trying to put the second program in the foreground so

everything looks fine here so what is happening is that so when I run this program ok so the

coroutine dot sh is working. So if you look at this both the programs have started working

and it has come out ok so since the second program has exited it has come out ok and now let

us try to see jobs ok so there are no background jobs, so look at this there are no background

jobs ok but still your program is running. So what is happening is that it says there are no

background jobs but still there program is running so why does this happen?

It is because when I executed this Coroutines dot sh ok this Coroutines dot sh, the Coroutines

dot sh had a process Id and that spanned two processes ok the first process was first p dot sh

and the second process was second p dot sh ok. So because of which so let me run this

program again this Coroutines dot sh so it created two processes ok so if you look at this so it

has created two process so you can see two bash shell ok. so it has created one as sleeping for

5 so it has created two processes.

Now what is happening is that so if you look at this now the first process has died then there

is the second process that is still going on and on and on ok, and what is happening is that the

second process you are not able to see using the job command because you did not execute

this from the current shell so the current shell is already died because the current program

which invoke this it already died. Because of which you are not able to see using a job, ok so

essentially then if the current shell has died that means the Coroutines dot sh has died then

how it that your program is still working is.

(Refer Slide Time: 10:19)

So here is one of the things that we know ok. So if you run the program from the shell ok for

example if you run the example from the shell then as soon as the second program gets over

that is second p dot sh gets over what is happening is that the first program still runs in the

background. Now how is it possible that your Coroutines program has already existed but the

program that created the first p dot sh has exited but then the first p dot sh is still running so

what happens is that the first p dot sh will actually get orphaned then the second process exits

early ok. That is why when you type jobs command you are not able to see that process.

Now the question is how do I know or what do I do to ensure that I come back to my shell

only after the background process as well as the second process that I start ends?

(Refer Slide Time: 11:27)

So what I essentially say is that when I give this command Coroutines dot sh it should not

exit immediately after the second program inside Coroutines dot sh exits. So in this case for

example the first and the second programs are running and look at this at this point the

second program has exited therefore I have come back to the shell you know I am able to

type any command that I want and I get the result at the same time there is something that is

running at the background.

(Refer Slide Time: 11:58)

Now once the Coroutines dot sh exits the first p which is running now gets orphaned and it is

running with its parent shell the Coroutines parent shell so it is working at the background but

then I do not want this to happen I want to come to the shell and I should be able to type any

command only after firstp and secondp gets over. So what I do is so in this case we have to

use command called wait and what it does is so if you I will edit this file called Coroutines

dot sh.

(Refer Slide Time: 12:30)

So in this Coroutines dot sh you see I am doing the same thing but then what I do is I type the

command called wait.

(Refer Slide Time: 12:40)

Now if you type the command called wait so let us see what happens So I run this coroutine

dot sh now you see the first program has started the second program has also started and let

us see what happens, so now the second program is going to end and still you have not got

the prompt.

So look at this you have not got the prompt, so what is happening now is your shell is

actually waiting for the background job to complete so actually if you look at this the first

program is still running we have 8,7,6,5,4,3,2 and 1 and only after that you will get back the

shell prompt. So in this case now can you get this effect by normal shell programming I will

try I leave it as an exercise try to find out whether you are able to do it or not.

(Refer Slide Time: 13:35)

See now we have got back the shell, so what this wait does is that so if you let us go back to

the code.

(Refer Slide Time: 13:42)

So what this wait does it that it executes this first program and second program as Coroutines

but then waits until all these programs are completed and then it exits. So if you remember in

this case we prevent the first guy or the first program from becoming an orphan. So you

would have heard about the word orphan that is when the parent process gets killed or exits

then the child process becomes part of the system. So in this case we prevent the first process

from becoming an orphan by putting the wait command.

(Refer Slide Time: 14:32)

Now if you look at this so if you you can solve the problem of coming back to you at shell ok

before all the programs are completed by putting the wait command. So the other thing that

you can do is that in this wait if you can give the process ID then you can say if you have

skipped as more than one background say for example I have firstp secondp is also

background third p is also background and then fourth p is running in the foreground.

Now suppose I want all of them to complete and then you want to come back to the shell then

I can just type wait at the end of the shell script. Now if I want to only first p to be completed

then I can give the wait for the specific process ID and then find out how to exit. Now in this

way we will ensure that the all the processes are completed before I go to the next execution

of the shell script see this is the idea ok. So sometimes if you use this if you do not use wait

what happens is that the current shell goes off one process becomes orphan and capturing

output of the process and processing it you could get some errors. So in order to avoid it what

you do is when I say wait then it waits for all the process to finish upto that point and then it

continues execution after this point.

(Refer Slide Time: 15:55)

So now what are the advantages and disadvantages so why should I talk about this or why

should I know about this, ok? So if you use Coroutines ok the advantage is if your computer

has only one processor let us say you might actually have a slight improvement in

performance whereas in executing them serially, ok? So this is sort of a parallel processing

that we are looking at with shell itself. Now if you look at this and will this be really useful?

yes, because not all the shell commands or commands that you run on UNIX take the same

amount of CPU or input output or interactive so your whole performance of any program

depends on what is its usage of CPU?

What is its usage of input output? what is its usage of instructiveness? Now any process can

differ with respect to these three criteria and therefore you can running them simultaneously

will you be able to really able to time share between two processes and actually sometimes it

may so happen that if you want to run two independent process you can run them together by

using these Coroutines. But ensure that if you want all the processes to complete and then

proceed you use something like wait ok?

Can these Coroutines have disadvantages? yes probably, what could happen is that if there

are two process that use resources in the similar way ok? Remember these two process should

be independent of each other because if they are dependent then one output should be given

to the others input so that is by typing. If they are independent of each other then you can

definitely get some kind of performance improvement of course it depends on can you really

guarantee performance improvement in most of the cases yes in some cases probably no, then

they use the same resources or same CPU at the same time etc and then it could slow down

but this definitely can be used to speed up your shell scripts.

