
Information Security 3
Sri M J Shankar Raman,

Consultant Department of Computer Science and Engineering,
Indian Institute of Technology Madras

Module 36
Shell Script Variations

 So until then, until now we’ve been using the while statement, the until statement and the for

statement. All these three statements are used for loop iteration. Now we saw that the for

statement we were able to pass a string because we put for star in for I in star so where the star

expanded to a string.

And then we are able to pass the string, then for the while statement and the until statement we

actually did some counts. Now let us see a variation of for statements where we can do this

counts so in this case for example what we are trying to do is

(Refer Slide Time: 00:54)

We’ll know use a program and then we’ll study this program to which uses the for statement to

countdown from values of 10 to 1.

(Refer Slide Time: 01:07)

 So here is the program so what we are doing is look at the syntax of this statement. So we are,

line number 3 we try to initialize the variable I to whatever value we are passing and then we are

trying to see what should be the condition so this is the initial value initialization then this is the

condition and then this is the increment or the decrement value for the variable I, and so

essentially if I pass a value of 10 to this this this shell script, it will actually start counting from

10 to 1. So let us try to execute this program and see.

(Refer Slide Time: 01:44)

 So you’ve done a revfor.sh then I give a value of 10, so it says counting 10 9 8 and actually it

sleeps for one second to ensure that we are able to observe this program so then it comes out.

Now what we’ll try to do is we will try to now debug this program and see how it executes, so

for that what we do is we edit this program.

(Refer Slide Time: 02:07)

 And then give a minus x option ok?

(Refer Slide Time: 02:15)

And then try to rerun this program, same program with the same variable, now if you look at this

we are very clearly able to see I’ll just stop this program so we are very clearly able to see this,

initially it the variable I takes a value of 10 and then the next step it tries to see a comparison of

whether the value of 10 is greater than zero and once it is greater than zero, it says counting 10

then it sleeps for one second then if you remember this was we are decrementing the value by 1

ok, then it’s checking whether this value is greater, now from this is the loop that it is executing

again and again and again.

So if you look at this this statement repeats, ok? By this way ok we are reproducing whatever we

had done with the until loop whatever we had done within the while loop we are also able to get

it within the for loop in bash shell. So the question is why is there three variation, well it depends

on what logic.

(Refer Slide Time: 03:17)

you are going to use so we’ll leave it fully to you on which ever syntax you are comfortable just

go ahead and do it, not only you should look at the syntax you should also look at whether the

flow of the code gets broken if are guts go is correct, if you use one of these loops.

Well one or the other things that you should be very careful in shell scripting is that there could

be some minor variation in syntax which you I thought you would have probably observed in the

previous code but then let me try to example, through an example try to explain through an

example on how there could be minor variations in your shell scripting code, ok? So for that

what I’ll do is.

(Refer Slide Time: 04:01)

 I’ll try to write a small shell program using the using the the while loop, so let us try I is equal to

10 while dollar I is greater than zero, so I say I give a do so I print echo dollar I then I sleep for a

second then I reduce the value of I so I is equal to expr dollar I minus 1, ok? And then I complete

the loop so actually this program will also do the same thing what we did in the last time that we

use the for loop but then I have something as a surprise for you let’s see what program we had

typed and let’ see how it is getting printed in the shell.

 So if you see I had typed like this ok now what you are getting is something like this and or able

to identify the difference so I had never put any semicolon here so if you look at this code I never

put any semicolon here but if you see this code, I get the semicolon here I get the semicolon here

and so on and in fact there is a semicolon after the brace, so where I where I inserted a new line.

So essentially what happens is that once you typing your code ok your shell script your shell

actually takes a code and breaks it into different new lines and this actually presents a new line.

SSo if you look at this semicolon it actually represents a new line, ok? So in some shell scripts

for example you take from the web or some code that you people have written instead of writing

one line after the other line you could actually put a semicolon and then spilt the statement into

two lines.

Ok so this kind of variations will actually exist in a shell script so you need to be aware of this

just want to mention it to you to ensure that you don’t get confused if you see those kind of shell

script.

(Refer Slide Time: 06:17)

Now coming back ok so we’ve seen that whatever programs we are doing we try to exit the loop

early by putting a control C we were in a hurry to get out of the loop so we put a control C or

you, if you don’t put the control C you are then the the loop went one executing and you were

able to exit the program only after it satisfied the particular condition or if the condition became

false in case of file loop the condition became true in case of until loop etc, now the shell

scripting provides a way of exiting a loop early. So what it does is you can use a break command.

(Refer Slide Time: 06:56)

 Ok the break command will exit from the current loop and the program control will be resume

directly after the loop construct from which it exited. The question is if I have a for loop ok so

immediately after then and and for is the only loop and inside that I put a break statement then

the program flow comes down to the statement immediately after that done ok it’s true for while

and until also now what happens if I have two loops ok which we do call as nested loop.

 So there’s an outer loop and there’s an inner loop if the break statement is present inside the

inner loop then it comes just after that done of the inner loop ok and if the break statement is in

the outer loop then it comes out of the for loop itself ok so the next point is that so suppose I

want to break for certain cases but I want to continue for certain cases that I don’t want to exit

the loop for certain cases so I want I want exit only for certain cases for other cases I don’t want

to exit and I want to continue. So in such a circumstance, ok?

(Refer Slide Time: 08:15)

 We have a continue statement ok so the continue statement actually what it does is it breaks

from the current line of continue and then starts executing that loop again ok for example if if I

say I I am executing inside a loop say I am counting numbers 5 4 3 and if I say continue ok so it

skips all other statements after the continue but then again comes back to the for statement and

exit so it will print the value of 2 and 3. So let’s this know instead of in explaining words let’s

try to look at an example and then try to understand how the statement works.

(Refer Slide Time: 08:57)

 So let’s take this program called breakwhile.sh.

(Refer Slide Time: 09:06)

 Ok let’s try to understand this program first and then we’ll go ahead and see how the break and

continue statements work, ok. So I am so let’s take this program so the first four lines ok you see

1 2 3 4 5, the first five lines tell you that the number of arguments for this program should be 2

and it says the first argument should be an integer and the second argument should be the number

that you want to break at so what we do is that we just assign the first argument as now and then

we start counting now and then we sleep for one second and then we exactly do a operation

whereby we try to find out at which point you want to either continue or break.

So what we are saying is that if this is the number to break ok so if I say I initialize the value of

num to 10 and I want to break at 5 so this if loop tries to compare the num with the value of 5 ok.

So if the value of 5 so if this compares this num with value of 5 ok and both are equal then the

loop has to break so one side does encounters the break statement it will come out here and say

exiting the program whereas in other cases if these values are not equal then you will do the

continue which essentially means it will not print any statement after this continue.

So let’s try to print some statement that after the continue I will not get printed ok and let’s see

whether this program. So essentially what happens is that as long as the number is greater ok so

for example if this number is greater than whatever you supply for the number to break ok the

program will break, otherwise the program will continue and this essentially will be and I can

also say that ok program continuing echo program continuing ok.

(Refer Slide Time: 11:23)

So let us see how this works, ok? So I put refer. sorry break while.sh and I’ll say say 10 and then

I want to say that 7 so it counts 10 so the program is continuing the program is continued and at

8 ok because I’ve put when the counts becomes 7 it has to exit, therefore it exits at 8. Now

remember I had also put one more echo which is not getting printed, so if you’ll look at this

program.

(Refer Slide Time: 11:53)

 I put this echo statement I’ll not get printed and actually it is not getting printed so now you

know how the flow of control happens in this program. So whenever I encounter a break

statement I know that I come to line number 25 print and exit, now whenever I come to a

continue statement ok I actually count here and then I don’t come to 25 but what I do is I actually

go back to this place that is 13 and then executes so that essentially this is a dead code or

redundant code. So this one that is mark is a dead code or a redundant code and so this is how a

break under continue statement works.

(Refer Slide Time: 12:36)

 So let us now try to use this again ok so break while.sh so let’s try to see the demo again so let’s

I want to break at 6. So what happens is that 10 9 8 7 6 and when t comes to 6 the program

breaks. So in this way we’ll be able to exit out of the loop based on a certain condition, so one of

the things that you should be aware ok in shell scripting is one you can also have a for loop ok

which is based on whatever we have done I mean in the sense for and then you have a code

brace, first code brace and second code brace and then close the code brace, ok.

The second thing is there could be bunch of syntax changes, so you need to be extremely careful

ok so whatever you type might be slightly different or some people could’ve type differently,

they could had semicolon and things like that and then third you should understand that there is a

break statement and a continue statement ok the break is used to break a loop and the continue

statement is used to continue the program and not execute some of the statements after the

continue statement.

