
Information Security
Sri M J Shankar Raman,

Consultant of Computer Science and Engineering
Indian Institute of Technology Madras

Module 29
Variables (Continued)

Ok in the last session we had a brief introduction about the variables how to read a variable

how to print a variable. Now we will expand this topic of variables.

(Refer Slide Time: 00:22)

We also found out how to set variables and we will look at slightly different examples. So

one of the things that we mentioned is that you can declare any variable in shell at any point

in time you need not have to tell what is the data type etc. So here is one example so shell

variables can be used to show temporary values and that is what we have been doing in the

previous example. So here is a line which says that files is equal to within double quote here

notes dot text and report dot text. And if you remember I told you that whenever you assign a

variable a value then the whole thing goes as a string. So in this case if you try to print this

file it will actually print it as notes dot text and report dot text.

(Refer Slide Time: 01:15)

So next see it as an example here

(Refer Slide Time: 01:20)

So let us say files is equal to notes dot text and report dot text, now if I echo this, you see that

it just prints whatever we had given so that is what we have been telling that it interpresent as

a string.

(Refer Slide Time: 01:40)

Now and we have printed it and we have found out that how it works ok? So one of the things

is you have variables which are called environment variables. So one example we saw in the

last session was that we had talked about variable called dollar pwd as a present working

directory ok? So if the environment variables are something like this say for example in this

room I am dissociated from what is happening outside this room so this becomes my

environment. So in initial script when you are running your program ok you have run it with

a constraint space or environment and this space provides certain variables which you can use

one of the variables we saw was suppose the shell wants to know who is running this

program ok? So it can echo dollar log name. Similarly the shell wants to know in currently it

is in which directory.

(Refer Slide Time: 02:40)

So for example let us try suppose the shell now this is the shell and this shell wants to know

which directory it is in currently because if you remember there is no interaction that happens

when you run the shell. So I can do that I can do echo dollar pwd and it tells you that

currently this shell is I am here in this shell in this place ok?. So suppose I want to find out

what is my name as last time So it says that my name is mjsraman.

(Refer Slide Time: 03:15)

So if I type a command called env it tells you and you can see that in this env look at this this

variable pwd this is what we saw then I can also look at environmental command and then

grep for log name so if I get for log name it prints mjsraman. So if you look at this these are

the environmental variables and there are lot many of them. You can have one session

interpreting what this all these things are? But any how we will take somehow those things

that are important to us. So here is an example so if you llook at this it says the language is

English and then Indian English ok? So such things what is my home directory it gives if you

type echo dollar home you will get is so on. So these are the environmental variables that you

have in your wishing ok?

(Refer Slide Time: 04:18)

Ok now so the shell variables are private to the shell that is if you run two shells then the

second shell does not know about the variables that are present in the first shell unless you

can export the variable to the environment and the other shell takes that environment, ok? So

these environment variables are passed to programs run from the shell, so the reason why So i

can even make a private shell variable and then I can export it to the environment so that any

program that runs in that shell can take this private variable, ok so let us take a look at this

example so if you look at this we have this files is equal to " notes dot text and space report

dot text" and when I say export files what it does is this file variable goes and sits as an

environmental variable. So let us demonstrate them with an example to understand this.

(Refer Slide Time: 05:18)

So if you look at this echo dollar files so the value is here now suppose I put environmental

command and then search for files it is not there correct? So now what I will do is I will do

an export ok?

(Refer Slide Time: 05:40)

So if you look at this command it says export files or export files is equal to there are two

syntaxes that are available since we already assign them the value we will use this syntax ok?

(Refer Slide Time: 05:50)

So we will do export files ok now let me run this command so you see that a variable that was

local to this shell actually got exported as an environmental variable. So what happens is that

if I run a program so this is useful suppose I am running 4 or 5 programs and I want to

initialize certain variables and pass it to the new programs this is one way of doing it ok?

(Refer Slide Time: 06:24)

So you can set the variables and then export it for other export it to the environment so that

other commands can use that variable ok?

(Refer Slide Time: 06:32)

Now there are few system variables that are there for example Home is the Home directory I

think we have seen it, and then path is the directories that are to be searched for any

executable code. This is very important because when you are installing lot of programs ok

most of the time what happens is that you do not put the path where the binary files are and

so even though the binary files will be there in that particular directory you will get an error

saying that file not found, and you will be wondering what and finally they will say that set

the path variable.

(Refer Slide Time: 07:10)

So let us take a small example let us spend some time on this , so if you look because this is

very important variable that you should understand so echo path for example in this case is in

my machine if the binaries are found in any of these paths then it will automatically execute

ok? If the binaries are not found in any of this path then it will not execute ok? Not only

binaries any executable files. So this is one of the very important variables that you have ok

you will be quite often using it and basically shell scripts are some time useful for installation

of programs and once you install the program you have to set this path variable otherwise

your binaries will you cannot identify and the program might give some errors. This is the

binary files are not there.

(Refer Slide Time: 08:00)

Then PS1 is for prompt of interactive shells I mean what this mean is ok

(Refer Slide Time: 08:09)

So if you look at this when I am doing this I have this I mean this is the PS 1 variable so if

you look at this my PS 1 variable can interpret like this and finally this is the command point

where it take the commands. So if I have another shell ok so if you see that my PS 1 variable

has changed so echo if I say echo ps 1 then it has become a dollar now i have a shell within a

shell ok? So probably yo can export PS 1 and then see what happens ok? You can take it as

an exercise.

(Refer Slide Time: 08:45)

So now coming back there is another variable called PS 2 which actually for example it

expects some command to be given so something like this let us give something like this then

this is the PS 2 variable what it says is that I am expecting some more correct commands

from you thats what it says ok? So once I type the current it says still your command is not

completed. So let us say I put sleep 1 and then I do a done so now it says ok fine it hangs so

what is the reason it is hanging? Any idea? okay so I am coming out of this we will see why it

does all this ok So the idea here is to show you that if I have something more to be done ok?

Then you get this prompt you know the greater than prompt and that is what is given by PS 2.

(Refer Slide Time: 09:45)

Prompt for multi line command : So I will type the command in one line that command has

not ended therefore the shell is expecting more and more commands and therefore it is giving

like this ok? And we already saw what the shell is?

(Refer Slide Time: 10:00)

So let us take a look at this file called files dot sh and then we will take a look at how we can

get all these concepts together.

(Refer Slide Time: 10:10)

So here is the first line of the code, so what it does is if you remember I had executed this and

shown you that it works ok then the fifth line is a comment ok? And then I have something

like echo dollar underscore echo dollar path, dollar PS 1 and dollar PS 2 I think we know all

these echo dollar path will give you what all the path for the executables and let us see what

this echo dollar underscore says because this is something new and as I told you there are lot

of funny characters that come in shell programming so this is one such character ok so let us

look at what it does ok so let us just try to do echo dollar underscore ok, so it says files dot sh

now what is it ok, take this as a next case and find out what does echo dollar underscore

means ok so let us go and find out files dot sh ok.

(Refer Slide Time: 11:15)

And then you are echo dollar path echo dollar ps 1 echo dollar PS 2 so these are some of the

environmental variables that you have let us move on to one of the other kinds of variables

ok?

(Refer Slide Time: 11:29)

we saw the environmental variables and the system variable can be exported etc now moving

on , ok we also have something known as shell variables this is very important the reason

why this is important is man of the times it see for example in C programming language you

have something how to read arguments from the user from a program so for example input

arguments we know how to print but I told you that you cannot be expecting user to send you

all the data it cannot be an interactive progams so if it is not an interactive program what

happens is the user has to type in the command line what are values he wants to pass now

how do you interpret those values. So for that the shell provides some built in variables so let

us look at some of built in variables so if you put dollar dollar then it tells you that what is the

process number of the current process I mean I hope you are very familiar now with what is

process numbers. See process ID is something unique to every process that is running in the

operating system.

So if you want to know what is the process ID of the current process I can use this dollar

dollar command.

(Refer Slide Time: 12:45)

So if you look at this if you I can even type it like this so if I put echo dollar dollar so it

shows 15207 which is the process ID of the current shell that it is running. Now let us go

back and then see so next I have dollar ban. So this tells you the process number of the last

background process so we know clearly that we can run a process in a foreground or a

background and so if you want to know the background process number you can use this.

Now the third one is very important now this tells you whether your previously executed

command is successful or not see UNIX has a convention that if your return value is 0 then

the previous program has executed successfully any other value other than 0 then your

program has not executed successfully so this you can identify I mean as I told you shell

scripting allows you to take decisions based on whether a command has run successfully or

not. So to take that decision this will be very useful we will see the usage of this.

And dollar hash tells you the number of command line argument so let us take a look at this if

you look at this, let us go to the files dot files dot sh.

(Refer Slide Time: 14:14)

So if you look at this as I told you you can have a current process ID you can have a current

umm so if you say dollar hash it tells you the number of command line parameters. So let us

and if you look at the other option, we will first go through all the options and then we will

come back then if you say dollar 0 then it gives you the command or the other program name

isn't she the very first word that you typed after the prompt I mean the dollar is called as the

prompt in the shell script we had that prompt PS 1 is the prompt and dollar star gives all

command line arguments and dollar n gives the position parameter let me demonstrate it with

a small program. So that you understand this.

(Refer Slide Time: 14:58)

So if you look at this program the first part of it we all saw how to I will make a copy of this

program and then we will, so I can just make it as say a new files dot sh , I will take new files

dot sh and then I will remove this part because we all quite well understand the PS 1 and

other kind of shell variables, what we will now do is we will now try to run this program so

let us look at this in line number 2 I can see what is the current process ID in line number 5 it

will print what is the current command that is being executed in line number 6 and 7 it tells

you what are the current parameters and if you want to know whether this line has executed

correctly then I have to do a echo dollar so if it is echo dollar question mark becomes 0 then

the current the previous program has executed correctly. So for example here I am making a

deliberate mistake if you see this. So because I am making a deliberate mistake I expect that

this value should not be 0 .

Whatever is getting printed should not be 0 and so I am printing echo "NO" and then if I want

to know how many parameters I am passing to this program when I can put dollar hash and I

can just say what is the third parameter that I am passing so let me just run this program and

show you demonstration if you look at this program the way I have to run it is I can say new

files dot sh and then I can give some parameters 1 2 3 4 etc 5 6 etc. Now what I have typed is

sh new files 1 2 3 4 5 6, now look at this the first current process ID is 18044 which is cool.

Now coming back it says current command line so let us look at the code what is the current

command line that it is printing.

(Refer Slide Time: 17:05)

So if you look at new files that is currently dollar 0 so if you look at dollar 0 what it prints is

the new files dot sh. So this is considered to be dollar 0. The current command that you are

running is considered to be the 0 output it is known as the positional parameter. And then

what are all the current parameters so since this is becomes the file name then whatever you

are passing after this becomes the parameter for this file. So what happens here is what are

the current parameters you are passing is 1 2 3 4 5 6. So how do I print it ? So if you look at

this file I print it Via dollar star. So when I put echo dollar star it prints 1 2 3 4 5 6. Now

what I willl do is I am trying to see whether the previous program execute correctly just a

question so this echo should print it correctly the this should pass. So let us see whether it is

got printed correctly yes it has got printed correctly and the program returned correctly

therefore it is printing a value of 0.

Then again I am printing yes. Now let us come to this line look at this I typed hi and hi is not

a command in UNIX. Therefore what it chases the command not found and look at the return

value I have pressed I actually typed echo dollar question mark and if you see this it returned

the value 127 which is not 0. Please understand that. This is one of the reasons in C

programming language they say that if you do anything correctly return a 0.

So if you look at this so 127 as I told you any value greater than 0 tells you that the previous

command not execute correctly. So here the hi command was not found therefore the shell

did not execute this correctly therefore it returned the value of 127 and therefore I have

printed no then how many parameters then I am putting dollar hash. This tells you the total

number of parameters that are passed for this program.

So if you are very familiar with C programming language you have int arg c then arg v. So

the arg c actually tells you how many parameters are getting passed so in this case you can do

a dollar hash and find out how many parameters are getting passed. And then I can find out

the particular parameter by giving dollar and a number after this so in our case 1 2 and 3.

So essentially we will be seeing that 3 the value three will be printed in the last line so look at

this so the value three is getting printed.

(Refer Slide Time: 19:54)

So this gives you brief so these are all the few shell variables these are very very important

when you are writing shell scripts you will be using them quite a lot so type some exercises

and try to get control of what these variables actually mean. So with this we come to the end

of this session and we will continue with sequencing and others flow from the next session

onwards. Thank You!

