
Information Security
Shri Vasan V S, Principal Consultant

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Mod03lec20
LINUX Shell Environment

In this module, we would actually look at the basic environment the shell is actually

providing for the user to make use of its features. So the first thing that we look at is, what is

called as a quoting.

(Refer Slide Time: 00:26)

So when we say quoting it could either be a double quote or it could be a single quote. So

first take a look at this behaviour of whenever we give a double quote. A double quote can be

used to prevent the shell from interpreting spaces as argument separators as well as it could

be used to prevent any kind of a name pattern expansion expansion. Right …?

So if I, for example say echo and within double quotes we say any string including the space

character because the fact that the space is actually been given within double quotes, the shell

will not treat them as an independent argument but this whole thing is we actually treated as a

single argument. Right .. ?

On the other hand and if we actually say use any kind of pattern expression like a Dollar user,

so dollar user is basically stands for the value of a user environment variable when we

actually use that within double quotes the environment variable will be getting replaced with

the value of the environment variable at that point in time and then appropriately made use

of. So if you for example say echo within double quotes you are logged as Dollar user then it

will be treated as your it will echo go back as you are logged as whatever is your current user

ID. Right ? On the other hand if I don't use double quotes and I say star dot log, as we already

seen in a previous module star refers to any number of characters followed by dot log. So in

the filename pattern substitution, so it will now display me all the files in my current

directory which actually has dot log (in its name) so it will display me all the files that is

actually having dot log (in its name).

Now on the other hand if I don’t want to do this file name pattern substitution for the star I

could actually paraphrase it with double quotes and then if I do an echo of it we will see that

it is actually displaying it as a normal string saying that it is star dot log itself without doing

the pattern substitution for Star.

(Refer Slide Time: 02:33)

Similarly single quotes bring out similar kind of functionality where the environment

variables when you use it in a single quote are not treated for expanding the corresponding

values to the environment variables but the environment variables even with the dollar

characters will be taken as literal constant character strings.

(Refer Slide Time: 02:55)

So in this case you actually looked at --- you are logged as dollar user when you put it within

single quotes.

(Refer Slide Time: 03:00)

It will literally take dollar user as a literal string and then print it as a test without reading user

to be in environment variable and put the value of the user environment variable in this

particular location which is basically what happens when you use double quotes in your shell

command line. Now there is something called as a back code also that is available typically in

your standard keyboard. This back code character will be available in the same key as you

have drilled a character.

So what happens is when whatever has actually been put inside the back quotes…. Right..?

starting with a back quote and ending with a back quote will be treated as a command, so if I

say uname minus R at particular command will actually be run and the output of the

command will be replaced in a particular location.

So for example if I try to say CD slash lib slash modules slash and within back quote we are

running a command called uname minus R, the uname minus R command will be run so that

it will be expected to be a valid command that will be run and the output of the command

will be replaced here as part of the shell expansion and then the entire command will be done.

 So if you try to do like this and if this is basically your OS version that is currently running

then when you try to put unnamed minus R within single quotes in this form, it will try to

change to the particular directory and the system will expect that there is a directory like 2

dot 6 dot 91 dot 6 underscore fc2 available and so back code can also be used within double

quotes where it will also be getting expanded like in a place where you are using the back

quote without a double quote.

(Refer Slide Time: 04:57)

So another way of finding the time that is typically used for running a command will be to

use a time command in which it basically gives you the different types of time that has been

spent, how much of real which is actually the elapsed time that has happened and what has

been the component of the time that has actually been spending running the user code and

what component of the total real time spent in running the system code and the balance of the

time as compared to the total real time will be the time that it is actually spent in waiting.

So the waiting here could be either this particular task itself has been waiting for its IO to

complete, or it has been actually idling around because there has been another task that has

been given the processor because of which it has been put to sleep waiting for its turn of CPU

to be given to it. So time is basically a command that could that you could use to get how

much of time it has actually spent in these different environment and for you to get an idea on

the kind of performance that your application is actually encountering on a typical running

system.

(Refer Slide Time: 06:11)

So there are environment variables actually available in the Shell. These are very handy

whenever we are actually required to make use of certain standard locations as part of our

command line in locations or as part of a Shell Scripts. So shells basically let the user define

their own variables and also there are standard set of environment variable that are actually

available which is provided by the shell in a default manner.

So these get initialised automatically by the shell process when it starts. So all the user

defined shell variables by convention are (dour) names always in lowercase and by

convention on the environment variables in Shell provide default manner are all in the upper

case.

So this is not a hard and fast rule but the standard general convention that is followed to

ensure that we basically get a very good quick hang of what is the variable that we are

referring to whenever we are going through a large script or for easy readability purposes. So

there is a command also called env that actually displays the currently defined environment

variables and their independent values.

(Refer Slide Time: 07:33)

So this is an example of user defined environment variables that I could initialise to wherein I

won't have a shell variable called project projdir equal to some value. So the equal to is

basically the differentiator between the variable name and the variable value for this is

something like my name value pair with the equal to sign here as a delimited between the two

of them.

So I want to have a shell variable, my own user defined shell variable called projdir and I

want to set the value of that shell variable to be this particular location and then I could

actually use this shell variable that I have defined in any kind of a command like for example

CD dollar project dir will actually change the directory location to this particular value that is

there of this project dir environmental shell variable. Right ?.. On the other hand I could also

use an environment variable a standard environment variable like home which actually

denotes my HOME directory and which is automatically set whenever the user is actually

logged in. Right ?

So the HOME is one of the environment variables it is set automatically by the bash shell

when the user is logging in pointing to the user’s HOME directory. So whichever user is

actually logging in pointing to the home directory of that particular user this particular

environment variable will be set and then you may say cd Dollar HOME it will actually take

me to the home directory of the currently logged in user irrespective of my current location.

(Refer Slide Time: 09:10)

So likewise the different standard environment variable that is actually available so I could

actually use an environment variable like EDITOR which is the variable that is actually used

to denote what is the default editor that this particular user would like to make use of,

whenever he has a requirement to open up a file and edit. Right ?

Similarly the HOSTNAME environment variable will be the environment variable that is

used by the shell to denote what is the name of the local machine typically the HOSTNAME

is actually used whenever any other kind of machine on the network needs to access this

particular machine and the hostname is the name by which the other machine will come to

know of the local machine’s name. Right..?

So, PATH is again another environment variable which is very commonly used, which is used

to denote what is the PATH in which the command that has been typed by the user has to be

searched, so when I type a command like, let’s say PES, the SHELL needs to know the

different directories in which the commands to possibly be present and the SHELL will try to

go and search for this command in each of those directories that is given in the PATH

environment variables.

So each of the directories in the PATH environment variable will be delimited by a colon

character and it will try to search for this command in each of those directories and if the

command is not found in any of the directories, finally it will report back to the user saying

that this command is not found and wherever, whichever location this particular command is

found, the shell will just go ahead and read the contents of that particular command file that is

basic instructions are available in the command file and then load it and start the process for

that particular command execution.

So, Likewise we do have different types of environment variables for user is an environment

variable that will be typically containing again by default this variable will get initialised as

soon as the SHELL is started. It will contain the current user name who has right now logged

into the system and for which this particular shell process as actually started.

(Refer Slide Time: 11:30)

So this is how the path environment variable will look like, as we were discussing we will be

de limited by colon character so whatever command is actually typed it will go first look at

the first directory that is given, it will try to find out if the command is available there, if it is

not there it will go and search in the second directory. Likewise it will keep continuing till the

end and in whichever directory the command is found, it will just read the contents of that

particular command executable file load into memory and then start it off as a Process.

Similarly LD LIBRARY PATH is actually used to find the PATH of a shared library whereas

the PATH environment variable is used only for finding the PATH of the common commands

or executable needs to be started. MANPATH similarly is used to find the whenever we are

trying to run the MAN command for any specific tool or command that we want to get help

for, it will go and search the MAN pages in the set of directories that is initialized as part of

the MANPATH. So, in this particular example go and search for the MAN page in this

particular first directory mentioned here and then it will go and search if it is not found in the

first directory, it will go and search for the MAN page in the second directory that is actually

mentioned there.

(Refer Slide Time: 12:50)

 So, alias is basically a mechanism that is available in the Shell again to have a shortcut for

command. So if I have a very common command that I keep executing and the command

actually consists of a big sequence of characters which I want to have only a very short form

for it, then I can use the alias command wherein I can set alias ls equal to whatever I want to

set the task. Right?

So in that way if I set alias frd is equal to this and whenever I want to run this big command,

if I just type the frd letters alone as part of my command, the command line SHELL will

automatically expand the alias to whatever it has been said to hear and then run that as the

command. Right? So in a way it basically sort of simplifies how quickly I am able to give

my input to the shell to make it run my command and also subsequently get the output that

much more quickly.

(Refer Slide Time: 13:55)

There is a command called which, which also used to find out where is it that my command is

actually available. Right..? Now, if I basically say which LS, it lists back telling me if that all

there is any alias for a less what is it that is getting expanded to and apart from that if there is

a command call alias also separately available.

So if my command LS is typically available in slash bin so you find that the command output

for this which is displaying me whatever is available for this particular argument in my alias

as well as in my path environment variable. So there is a slash bin directory is available in

my path environment variable and since LS command is available under slash bin, it is also

displaying displaying that here.

(Refer Slide Time: 14:50)

So there is a file called dot bashrc like we have seen in earlier modules. Any names that is

actually starting with a dot is a hidden file and the dot bashrc file available in a home

directory of the user is a hidden file that contains all the different things that needs to be run

as and when the shell process is actually started by step process actually started for the user.

So whenever a bash shell process is actually started for a user the bash shell automatically

goes and tries to find a file called dot bashrc In the users home directory and then execute

whatever is there inside that file. So I could actually use this file for defining the different

values I want for my default environment variables. I could set my own aliases. I could set

my own prompt.

I could have my own greeting message and so on and so forth. So essentially whatever I want

my shell to be initialised with, as and when I start of a new shell, I will put all the sequence

of commands and initialisation as part of this dot bashrc file which is available in my home

directory so whenever unusual process is started by me, the the shell automatically is

programmed to go check out what is in my home directory under the home directory check

for the existence of dot bashrc file and if that file is found, execute the file and because of

which whatever customizations I have done inside that particular file, they all will be getting

executed and initialised.

(Refer Slide Time: 16:30)

So if they want to find out what are the different commands it is actually been executed by

the user currently, I could run the history command and it will display me the list of the

previously executed commands wherein after that list is there if I just type double

exclamation mark in the command line, it will just re re re run the last command it has been

given to the Shell.

 On the other hand if I want to run a command specifically by a number, Right, I could

specify exclamation followed by the number or I want to run a command which is actually

starting with a particular sequence, I could say exclamation followed by the sequence. So

these are different ways by which I would be able to go back to the history of all the

commands that I have actually run and appropriately select the command that I want to run

right now.

So if I had basically typed a very long command, I don't want to really retype the command,

long command again and thereby waste time, so you can consider this as like I kind of a

shortcut mechanism where I can quickly supply to my Shell what is the command that I

intend to run right now, instead of typing in the command one by one, character by character,

especially when the command is a very long one.

Thank you

