
Information Security
Shri Vasan V S,

Principal Consultant
Department of Computer Science and Engineering

Indian Institute of Technology, Madras
Module 16

LINUX Basic Commands (Continued)

So in this module we will continue our discussion on the basic commands after looking at

what are the different options available for us to do the regular expression and use the

different regular expression characters for making very very powerful searches are very very

powerful a replacement.

(Refer Slide Time: 00:33)

So regular expressions are used typically in various UNIX tools and commands and we just

saw an example of it being used in the set command and LS command in our previous

models. So what is a regular expression actually do they really try to allow us to match

different kinds of input text that is possible where in the input text will actually be getting

dynamically expanded at runtime irrespective of whatever are the contents of that particular

location in which that expansion is trying to happen.

So for example if I try to say that I want to use a regular expression star as we have seen

some of the examples in a previous modules, so if I say star txt I wouldn't know at any point

in time whether there are two files ending with txt or 5 files ending with t x t or any number

of n number of files does exist ending with t x t, right? But on the other hand whenever I am

trying to use that regular expression in my script or in the command line whatever it is, the

star is getting expanded and automatically getting replaced with the contents as it is standing

at that instant of time. So my script or my command when I use regular expression does not

need to change depending on the contents of my directory or the pattern where ever I am

actually trying to use regular expression for, right?

(Refer Slide Time: 02:13)

So the very common regular expressions are typically used is basically a dot, a dot will match

any character so I could have any character in that particular location where I have specified

dot in my entire regular expression. So the open square bracket and the closed square

brackets will typically match any one character listed inside the square brackets, right?

(Refer Slide Time: 02:50)

So for example if I say that I want to look at a file name starting with a or b I will specify that

the filename could be like here I don't have any file that is present here. So if I for example

say l p star what I am basically trying to tell here is that I want to list all the files with

beginning with either l or beginning with either p followed by any number of characters

because a star is used, right? So it will display to me all the files in my current directory

which is either beginning with L or beginning with p.

So that is basically what is square brackets is all about. So replace any one character with

specified within the square brackets and expand the given regular expression to see what kind

of pattern is matching. Next is basically within a square brackets I specify the caret symbol

which which essentially means that whatever characters are following this particular symbol

those characters should not be present in the pattern matching, right? So this is basically and

negation of what the normal open square brackets closed square brackets that we discussed

here. So its basically the negations behaviour of this particular regular expression.

(Refer Slide Time: 04:18)

So if you see this here if I specify it like this it will display to me all files and directories

which is not beginning with L and P. So whatever you saw here as the contents previously for

my the previous in vocational regular expression you will not find the same contents here

because the negation is actually been asked for saying that the first character should neither

be a l nor be a P in this particular regular expression.

(Refer Slide Time: 04:52)

So on the other hand if I use the caret symbol without putting it within the square brackets

then that means the the pattern that is following the correct symbol should be the beginning

of the line for it to match the regular expression. Dollar similarly would mean end of the line

and star would as we have already seen few examples in our previous modules and also in the

previous example that I showed you here. Star would typically mean 0 or more times plus

would mean that 1 or more times and Question mark would mean 0 or 1 time.

So question mark Here would essentially mean that there should be only one character that

that is present in that particular location. So regular expressions as I was telling you it's a very

very powerful very very useful tool for doing lot of very complex task and it also is very

handy for us when scripting and more details of the regular expressions can be found in this

particular URL site this is Justin sample and there are really lot of other sites which also talks

in detail about regular expressions. So we would strongly suggest that you actually go

through some of those sites as well and then get very comfortable the regular expressions

because you will find it really very very handy going forward.

(Refer Slide Time: 06:18)

Now coming down to the next Basic concept that we will be talking about is what is called as

a symbolic link. So as we were talking in the initial module a link in the UNIX parlance is

something very similar to what we actually call as a shortcut the desktop and the windows

world, right? So are typically for those of us who come from the Windows background we

refer to the something called as shortcut, where in you want to really have a shortcut created

typically in our desktop screen for a file or directory or some content that is actually available

somewhere in our hard disc in a very embedded location right?

So what we mean by embedded location is the maybe it is actually available in lot of depth in

my entire file system and I don't want to really waste my time in trying to click on or trying

to migrate to each of those of those sub directory locations before accessing my content. So

likewise the same behaviour of a shortcut in Windows is what is called as actually a link in

the lakes world.

(Refer Slide Time: 07:40)

A symbolic link is basically special file which is actually just a reference to the name of

another file or directory, right? So this is typically used for reduce the disk space occupied

and as well as a complexity when two files is actually going to have the same content

unnecessarily wasting the disc space if I really try to have it as two different files only one

file will be stored and second name which with which I want Access the same content will be

created as a link to my original file within which I have my content, right?

So whenever I use symbolic link if those links are typically denoted ls minus l output as

hyphen followed by the greater than symbol and then followed by whatever is a linked file

name. So if we actually use JNU LS LS version of the command it also will display it in a

different colour.

(Refer Slide Time: 08:34)

So how do I create a symbolic link I specify use LN command and then specify minus s

option for creating a soft link where in I specify first the filename whatever is a filename to

which I want the link to be created, and then follow it up the link name? So the link name

will be the name which would be created as the pointer to the original file name that is

actually created here.

So if I want to create a file create a link with the same name as a filename then I just don't

specify the link name explicitly I just specify the filename alone. So in this particular case

there is a file called readme.txt in my parent directory with that is the reason why we are

actually use dot / readme.txt and with this command since the command has not been given

the link name explicitly what is going to happen is that there is going to be a link on

readme.txt that is going to be created in the current directory with the same name, right?

So to create multiple links at once in a given directory I could actually use multiple file name

arguments followed finally by the directory in which I want to create the link so each of these

files will actually be created as a link in the directory that I am actually mentioned finally in

my LN command line and for removing a link since the link is also a special type of a file as

we saw in of a previous modules I just need to use this standard RM command that we would

use for a typical file.

 So like I use RM command for typical file I use the RM command for the link name also and

then if I use RM followed by the link name that particular command umm that particular file

will be getting deleted from my file system hierarchy.

(Refer Slide Time: 10:40)

So another type of a link is basically what is called as hard link where the default behaviour

pattern command is actually created as a hard link only. Now the hard link is it is a like a

regular file that contains are actually getting pointed to the same physical contents of the

original source file, right?

So the difference between a hard link and soft link is if I basically remove the original file as

far as I hardly contents are concerned there will be no impact the hard link contents and the

contents will be finally removed only if there are no file names that are actually pointing to

the contents in when when when they have been created as a hard link, right?

(Refer Slide Time: 11:32)

So in this case what I could really actually try to do here is that when I use this soft link

because they are going to be using the i nodes in a file systems. I node is basically the

interface that I really have within a file system. So every file that I have created will actually

have umm I node Data Structure inside the file system so I node as we would have seen in

our file system module as part of the initial OS description stands for index node and there

will be a file there will be I node that will be actually available for every file that is created.

So this I node will have meta data associated is a file as well as the pointer to the data blocks

in which data for a data does blocks in which the data associated with this file is actually

stored inside, right?

So in case of a soft link what is actually happening is that I will have a soft link with the

different file name pointing which actually has a different I node created whereas when I

actually have a hard link created a hard link is also a link pointing to the same I node where

in the number of links is actually incremented which is presented which is one of the

information that is actually presented inside the I node and so if I remove the hard link name

unless and until the number of references in that I node comes to zero the contents of that file

which has been pointed by that i node will never be deleted by the file system, right? So that's

basically the core difference between soft link and a hard link.

(Refer Slide Time: 13:29)

So whenever we need any kind of additional details on how to use a particular command

options or there are typical options available either minus H or minus L on almost all the

Unix commands, so if you really use minus H option or the minus L option it will give you

details about how many options are there what each of those options mean and what kind of

usage are required for each of those options all those details will be given to you.

(Refer Slide Time: 14:07)

So for example if you really want to find out how to use a command called let us say it

displays the different kinds of options that is available here and tells me for each of those

options what is the corresponding explanations of what those each of the options really mean.

So in this particular case minus H actually stands for human readable format so likewise there

will be some examples some minimum examples of the day of the Unix commands where in

the minus H option would be used for doing some other implementation of a specific feature

within the command but predominantly if you see the almost all the commands will have the

minus H or the minus L option to give you more details about what that particular command

is doing and what are the features of the individual options available within the command.

(Refer Slide Time: 16:05)

So in the other hand if you want to know details about a command the weight has to be used

the what is the behaviour of the command? what kind of error messages would possibly come

from the command and all that you have what is called the Mac Command so you can just

type the man followed by the keyboard whatever Command or the key that I would that you

want more details on it will display you the complete set of health related information for that

particular argument that you are given to the man Command, right?

So it it tells you what are the different ways of using it how each of those options are

arguments changes the behaviour the command what kind of error messages you could

typically expect to get from the command and also what are the other related commands to

the one that is actually getting displayed right now. So it is actually extremely useful for us

as a sort of a cheat sheet to have a quick reference whenever we have to sort of recapsulate on

what are the different options available the behaviour of each of those options and so on.

(Refer Slide Time: 16:13)

Similarly you also have the info command which gives you more details as compared to what

a man command actually tells you and it also will tell you the associated command that is

actually available and any kind of a relationship or dependency of the given command with

those associated commands.

So essentially gives you more details about how to use the commands? What is the

behaviour? What are the other related commands? And So on and So forth Man and info are

typically two useful commands that will give you additional information on how a particular

command could be used by you including the options including different kinds of arguments

that it might take and behave differently.

Thank You!

