
Information Security-3
Sri. Vasan V S, principle consultant

department of Computer science and Engineering
Indian Institute of Technology Madras

Basics of Unix and Network Administration
Operating Systems
Mod03 Lecture15

Module 15: Basic Commands

Hello everybody, so in this module, we will actually start seeing some of the basic commands

that we need to start getting familiar when you are operating on a Linux system.

(Refer Slide Time: 0:25)

 So the first command that we will look at is what is called as cd, cd basically stands for the

change directory, so as in the previous module where we were given a talking about the entire

file system hierarchy. File system will be typically consisting of one or more directories and

each directory in turn will recursively contain typically more number of subdirectories and

files inside that.

 so if you want to basically change from one position from one location of the file system into

another location cd is a directory that we actually try to cd is a command that we actually try

to make use of to go to another directory location. So we specify cd followed by the directory

name and suppose, if you want to only go to the home directory, we specify it as just cd

without any argument and then pwd command will basically tell us what is a current

directory location that we are in starting from the root of the file system.

(Refer Slide Time: 1:38)

So let us see very quickly how these are actually working. So let us say that I have a directory

called example, in my home directory so if I want to basically change to this directory I

specify cd example and then I am basically in that location currently. So here if I want to see

what my current directory location is, I use the command pwd, because of which it displays

me what is the current directory location that this particular shell process is currently end.

So it displays the current directory in which the shell is present and any command or that I

am going to run any file that I am going to access if the file name has been given with the

relative path, it is always going to be considered as it being available in this particular

location that is shown here. So that is how you would typically use the cd and the pwd

command for navigating between the different directories of your file system.

(Refer Slide Time: 2:47)

So the next simple command that we need to understand is what is called as the cp command.

So the cp command basically it talks about coping a file from one name to another name or

from one directory location to a totally different target directory location, right. So it basically

takes 2 arguments the first argument to the cp command should be the source file, whatever

file you want to copy and then the second argument to the command should be the target file

whatever is the name of the file that you want to copy it too.

So the contents of the source file you whatever you have given as a first argument will now

be available to you as the contents of the target file name. So other w ay of actually using the

same cp command is if I have multiple files to be copied into a single directory location, I

could specify all the files that I want to copy how many our files are there and have the

directory as my last argument. So whatever files have been specified as arguments to the cp

command initially, all those files will be copied into the directory argument that is given as

the last argument to the cp command.

So one option that you have to the cp command is minus i, the minus i actually stands here

for interactive. So in this particular seen arrow, the user will be ask for a conformation if the

target file name is actually already present. So if I say copy minus i followed by the source

file and the target file and let us assume that the target file name is already present in that

location where it is being attempted to be copied , because of the fact that minus i option has

been used, the user will be asked for a conformation on whether they have really want to

overwrite the target file sort of replace the existing contents of it, right, because if the target

file is over written and if it is already existing then we would actually end up losing the

contents of the target file, so the minus i option is basically a sort of an additional

conformation that the system is actually trying to get from the user on whether they really

prefer overwriting the contents of whatever has been given as a target file name and another

very common option that is used is a minus r option which basically does the copy in a

recursive form. So what we mean by recursive form is? The two argument of this particular

command are basically the source directory and the target directory. So whatever are the

contents of this particular source directory that is mentioned here will be recursively copied

into the target directory?

So let us say that there have been some sub-directories also available as part of the source

directory then those, directory sub-directories also will be copied in a recursive manner to the

contents in the target directory. So in that way I do not need to really run the cp command

individually for every sub-directory that is present on the source directory, but with a single

command and using the minus r option to this particular cp command, I will be able to take

the entire contents to the source directory on to the target directory.

(Refer Slide Time: 6:06)

So let see a few examples of how this really works. So if I have for example file called

readme, right and I want to have it copy it into another file like this, I typically have this

command called cp and where I specify the source file which is basically readme and then

this particular source file I am telling that as to be copied on to the target file with this name

as readme dot copied, right. Now when I basically say try to list whether this particular file is

available it shows me that it has been actually copied successfully and I am able to list that

file also, here as part of the ls output.

(Refer Slide Time: 7:00)

So some of the other commands that are also very commonly used with files is what is called

as an mv and the rm command. So the mv command , basically stands for move , so I will

basically be giving again 2 arguments here, one whatever is a existing name source file name

that is existing and the second argument is basically what is a target file name to which I

would want this file to be moved too, right. So if say move, uuh the old file name followed by

the new file name, the old file name will be renamed in the file system to be of that of the

new file name whatever has been given as a target file name that is basically the second

argument in the move command. So similarly if I use the minus i option like the minus i

option that we have the cp command for every move of the old file name to the new file

name, there will be an explicit conformation that will be required from the user saying yes I

want to move the a name from the old name to the new name (())(8:05) out which this

moment will not happen.

So the next command is basically what is called as an rm command, so rm as the name is

denoting stands for removing so if I want to remove multiple files I could specify the multiple

file names as individual arguments to the rm command and if I have the necessary

permissions, all the files that have been given as arguments to the rm command will be

removed from the file system, again we have the minus i option where before removing the

given file if the minus i option has been specified in the command line. These files will be

removed only after the user explicitly conforms saying that yes he wants a file to be removed,

then there is a another option called minus r, with sort of recursively removes the contents of

a directory and then removes the directory also.

So a if I (())(9:04) for example say rm minus r dir1 dir2 dir3 right, it will remove the contents

of dir1 first then contents of dir2, contents of dir3 recursively. So here recursively what we

mean is that if I have a subdirectory inside dir1, the contents of that subdirectory will be first

removed then the contents of the direction 1 will be removed and the direction 1 entry itself

will be removed, right. So that is basically some of the very commonly used options with mv

and rm.

(Refer Slide Time: 9:40)

So coming to the commands that are very commonly used for creating and removing

directories you have a mkdir command, which basically stands for make directory and I again

give the arguments of the directory names, which I would like to create with this command.

So if I say make dir dir1 dir2 dir3, you will have 3 directory is created with these names

assuming that we have enough permissions available on the place where these directories are

getting created. So, similarly if want to remove the directory I specify rmdir, it stands for

remove directory and then give the arguments of the directory names which I would like to be

removed, right.

So the only point to be noted here is the when I am using the rmdir command, the command

will expect that the given directory is whatever has been given as a arguments do not have

any contents inside them. So the contents no sub-directories, no file should be present inside

the directories that has been given for rmdir as arguments, if the contents are there it will just

report back another massage saying that since, there are contents inside and it is not empty,

the rmdir command is actually failed.

(Refer Slide Time: 10:56)

So let see basically how these commands are working. So if I say cp, README dot copied

and README2 2. So I am basically copying the file README dot copied to README2

and now I say move. What is going to happen is that the file name as readme dot copied will

no longer be existing and the name will actually be getting change to README3. Now if I

try to find if I have this file name as README dot copied it (())(11:42) back and error me

saying that no such file or directory, on the other hand if I now look at to see if the

README3 that is the name that I used as a target file name in my mv command is available,

it says it is actually available as part of the ls output, right.

Now similarly if I want to create a directory I use the mkdir command and directory gets

created, right. Now if I say rmdir, this particular directory will be getting removed, it says

again no such file or directory, right. So some of the very very simple commands that are

very very commonly used when you are dealing with the Linux command line.

(Refer Slide Time: 12:43)

So if you want to display the contents of the file you have the cat command , it basically tries

to display the contents of the file how many (())(12:51) files you have actually given as

arguments to the cat command and then you have the more and the less command, which also

displays you the contents of the given file names as arguments , but here it after displays after

displaying the first page of contents of the individual files, it waits for the user conformation

to continue so that it is sort of an interactive mechanism by which the user after reading

through the contents of the first page goes and presses a key to make it display the contents of

the second page and so on, right.

 so that essentially is more user interactive wherein the command is basically getting

conformation from the user by making him press any key in the key board for it to go and

display the contents of the second page and third page and so on one by one, right. so the

more or more and the less command is actually used to display it page by page and you could

also sort of search through any kind of a string occurrence that you want in the output by

using the slash and the question mark command.

So if I mention (())(14:04) slash followed by string name, it will try to display the lines where

the content where that particular string is available in the entire output and the slash

command will basically search for the string in the forward direction, so from the current line

or the page to the subsequent lines and pages going forward whereas the question mark will

basically try to search for the same content in the reverse backward direction, right. So that is

basically the difference between the slash and the question mark command.

(Refer Slide Time: 14:42)

Then the next set of commands that we typically make use of is what is called as head and the

tail command. So if I basically say head followed by the file name by default it will display,

the first 10 lines of that particular file alone and similarly, when I say tail it will display the

last 10 lines of that file which has been given as an argument. If I need to be getting the

contents of anything other than the 10 line.

So let say I w ant 25 lines to be displayed I could always use the minus option to the head or

the tail command appropriately and specify how many our line. So if I say for example tail

minus 20 and give a file name, it will display the last 20 lines of the file, the same case whole

is true for the head command also. So if I say head minus 15 and give it a file name as an

argument, it will display the first 15 lines of the given file name, which has been given as an

argument.

Now there is another very powerful option very useful option called as minus f to tail

command, which basically stands for follow. Now what this particular command actually

does is? apart from displaying a last 10 lines of the given file name at that point in time, it

just does not come out immediately, but waits for the subsequent updates to the given file, as

an when it happens, you will find that the tail minus f option the command output is also

getting refreshed immediately.

So this is very very useful whenever somebody like system administrator needs to keep track

of the changes or the updates that would come in in a typical product log file, wherein any

kind of warning massage any kind of error message that the product is actually trying to

updates in its log file, with the tail minus f option the user will be able to quickly come to

know , because they massage that is actually getting updated from the product should be

viewable as part of the output tail minus f command very easily.

(Refer Slide Time: 16:54)

 We will dealing with this a grep command, so grep basically will help us to search for

particular pattern in the files. So I specify the pattern as first argument and then I specify the

file or multiple files to the second argument wherein the existence of the pattern is checked in

the given list of files and if they are found, it will display the lines in which that particular

pattern is present in each of those files that has been given as argument to the grep command,

right.

So if you for examples say grep error star dot log you will find the pattern error is searched

for in all the files that are ending with dot log. So in one of the previous modules we had a

look at the regular expression pattern for star with meaning, it sort of replaces zero or more

characters in the file name substitution. So any kind of a file name that is actually ending with

dot log will be sort of taken up for searching for this particular pattern error. So all the lies in

which the pattern error is found in all the files ending with dot log will be displayed as output

of this particular command and when we use the minus i option, it is sort of case insensitive

wherein if I give this pattern as error.

So if I have for example, a word with the letter e in this error alone as capital case, right

upper case and the remaining is all in small letters, but whereas my pattern that I have given

is all in small latters, because of the fact that we have actually use the minus i option even

that word will be actually getting recognized as the pattern as matched pattern and then that

line also will be getting printed here, right. So that is basically what we are referring to as the

case in sensitive option here, where the the case will not be specifically checked, but the

entire string without being sensitive to the case of any of those letters or for the entire string

will be searched for in the given list of file names and then the corresponding lines will be

printed, right.

So minus r again like we saw in the cp command and the mv command, it stands for

recursive. So in the current directory, the dot represents current directory as we have seen

before all the files will actually be checked recursively for this particular pattern and also

when a case insensitive manner, because I have use the minus i option here also and then

those lines will be displayed.

So when I use a minus v option the behaviors of grep reverses, in the sense that all the lines

that does not have this pattern will be getting displayed, right. So but the default behavior is

all the lines, which contains this pattern should be displayed, but when I use minus v option

all the lines which does not contain this pattern will be getting displayed.

(Refer Slide Time: 20:01)

So sort is a command that is again use to sort the contents of the file and then display it in the

standard output, the contents of the file is not getting updated as part of the sort command, so

the contents of the file only be getting sorted and then displayed out on to the terminal

window, but the file contents itself will not become sorted inside the file, right. Now sort

minus r does the reverse behavior. So instead of it being done in a lecsecographic (())(20:30)

order. Here, the reverse behavior of the reverse (())(20:34) graphic order will be done

whenever I actually use the minus r option.

 So minus u option is basically standing for unique wherein if it finds that 2 lines are

consecutively exactly similar to each other, then the output of those 2 lines will be sort of

replaced by a single line in my output, right. So that is basically why this option called is

called as a unique, wherein multiple lines similar lines that are available will be getting

replaced with the single line in the output as part of the sort. So we will be actually seeing

more combinations if how this sort command is actually working in our subsequent modules.

(Refer Slide Time: 21:18)

Next command is basically the sed command. sed is basically stream editor, it basically tries

to pass the text file and implements sort of very a simple programing language to sort of do

any kind of transformation on the searched text as well, right. So if you, for example see this,

so basically saying sed, S S basically stands for a string search slash abc slash def. So, it it

tells that if I basically try to find abc that particular string abc has to be replaced with def and

the second argument to that is basically the test file, this test file should be looked at and all

patterns where the string abc is found will be replaced by the def string here as part of this

sed command, right.

Now if I try to use this kind of regular expression pattern you will observe that you have a

symbol called as a charact (())(22:26) symbol followed by the open square brackets in the

close square brackets in which 2 characters are present. So one is a white space character and

another is a slash t character. The slash t character stands for the tab character and what it

essentially means is that in the square brackets, we would mean that you have a matching of

any one character that is actually mentioned within the square brackets and the close square

brackets, followed by star.

So star as we saw before basically it stands for zero or more characters and this charact is

basically to denote that the beginning of the particular line. So this entire regular expression

pattern what it actually tries to do is, if I find at the beginning of the line, any number of

white spaces or any number of tab characters, why is here any number, because you have the

star here. So any number of white spaces or tab characters why is it or, because you have use

this open square brackets in a close square brackets, replaced that with a blank line, right that

is why you do not see any character here.

So as you saw here in this example, def was given as a replacement string whereas in this

particular case as an argument to the sed, I am not giving anything, so essentially it means

that you do not need to replace it with anything, but just replace it with a blank space at that

particular position wherever you find the pattern matching this, right. So that is basically

what this particular a sed command option is actually trying to do. So we will see

subsequently the different type of regular expressions in our next set of modules.

