
Information Security-3
Prof. V Kamakoti

Department of Computer science and Engineering
Indian Institute of Technology Madras

Basics of Unix and Network Administration
Operating Systems
Mod02 Lecture 11

Module 11: File Systems-1

So the most visible part of an operating system is the file system, right. So what you do not

see anything inside, so once you open a shell or when you open your dextop what you see is

files, directory is in files. So file system is very very important and files actually is the basic a

file is the basic unit of storage when I even want to save one byte say one character (())(0:35)

I want to just save k, I need to create a file and save that k. So file system is very very

important and from a security point of view, the leakage of information happens to leakage of

files.

So there are lot of things about file security of files which in the subsequent modules we will

cover, right, but we will just give you the basics of how file systems are implemented so that

there is a completion in which what we have trying to learn, here. So the next 2 modules I

will give you some basic implementation details of file system, specifically from a unix point

of view not necessarily Unix, but more on Unix, right.

(Refer Slide Time: 1:15)

So what is a file? A file is a logical storage unit. It is just a collection of related information.

These are all textbook definitions, okay. Now the file system is actually basically organized

into layers, so there is again a layer like how we add a memory in hierarchy where we had

disc and then we have memory, then we have cache register, like that file system itself we

could have a multiple set of layers, you will get to know about these layers.

The entire file system actually recites (())(1:45) on the secondary storage and when the

system boots up some part of things comes on to the main memory, right some part of the file

system information comes on to the main memory and when you close down the system shut

down the system this is return back, if you do not shut down the system, many part of your

file system can be there in a main memory and we can continue to have it that is why if you

suddenly switch off your system, then we want to reboot then it may say, file system

corrupted should I fix what it means? This is what it means.

So when a system is booted up from the disc some part of the file system is basically moved

into the main memory and then when the system is shut down, it is going back into the disc,

so that is why you need to properly shut down your system so that next time when you boot

then there is no problem with your file system. Why do I move it to the main memory as I

told you main memory is much faster than the secondary memory? So to enhance the speed

of your operation of your file system, some part of your disc hard disc some part of the file

system, some crucial parts we will discuss some as we proceed if brought (())(2:54) into the

main memory.

Now, there something called a file control block, which basically have information about the

file and for every file we will have file control block and then there is a there is also one very

important thing the device driver, which has to work along with the file system, the device

driver is what that disc driver is, right. So your USB or whatever for every storage device

there is a driver and that driver has to basically take care of the movement of data from the

CPU, RAM to the disc and disc back to the RAM, okay. So these are all very very important

aspects of the file system, right.

(Refer Slide Time: 3:36)

Now we said that the file system is layered. What is this layering about? So I have an

application program, which wants to access a file. So it basically sees a logical file system,

logical file system is that I see hello world dot C, I do not really care whether that hello world

is stored on a USB disc or that hello world is stored on a CD or hello world store on a old (())

(3:59) tape or floppy or whatever I do not really care. So as an application program I see a

file as a name, right hello world dot C, seating in some directory so, right. So that is what my

view as an application program is a logical file system, I am not bothered about how

physically that file is stored in which media and which form.

Now somebody has to hide that physical storage from me and who does it? The file system

part of the operating system does it, right. So I see f logical file system. What does the logical

file system see it? That see is an file organization module. What is file organization? The file

is organized like a tree, right. So you have a root file system inside that root, root directory

inside that root, there are several directories, inside that several directories, so it is an

hierarchy of directories and in each directory I could have other sub-directories plus files. So

that is how, directory itself is a file, which will give you the list of files that are stored here.

So that is the file organization.

The file organization module sees a basic file system and then the basic file system basically

sees an IO control with has to read and write and that the IO control basically sees the

devices, right. So there is a complete abstraction at the highest layer of an application

program just seeing a file as a name or a directory slash name then there is a file logical file

system looking at you sees is a file organization module. File organization module sees a

basic file system, the basic file system sees an IO control, IO control basically sees the

devices. So this is the layered file system.

Why we need a layered file system then only application programs can be easily written. So

application program need not have knowledge about the basic implementation and this is also

impor the other important thing is that there could be the operating system could have much

more control on the access of the files, right. So giving this abstraction, the operating system

can give permissions for say user can use only this part of the file system, right. So user B

can use some other part, user A and user B cannot have intersection in what they can use or

they can have intersection, wherever they have an intersection, it will be only a read only files

system. The user can only read from this, user cannot write it into this part of your file

system. So all these type of access permissions can come up we going to talk about that in the

later modules, but that is very very important the layered file system has lot of implications

on security.

(Refer Slide Time: 6:41)

So a file system essentially has one thing called a boot control block. So when we boot a

system it says, so I am looking into a bootable device. What you mean by a bootable device?

This is a disc in which the first entry or we call it as sector zero or the first that should have a

bootable program. So that is called the boot control block. Then it has something called the

volume control block then it has a file control black. So boot control block basically enable

booting through that particular disc. The volume control block actually controls, so there

could be multiple volumes and then each volume is controlled and within that volume control

block we have a file control block, which basically manages the entire directory structure

etcetera.

(Refer Slide Time: 7:34)

So again there is a layer there within a basic file system itself what we call here, the basic file

system you see 3 from the bottom, there could be hierarchy there or there could be a partition

there of responsibilities. The boot control block is responsible for booting the system, volume

control block to maintain the entire volume then file control block is for maintaining

individual files. So there is an hierarchy created there. So all these hierarchies are important,

because this is where we basically you know any (())(8:00) into this can cause serious

information security issues.

(Refer Slide Time: 8:07)

Now we will now look at the typical file control block the bottom most part of this. So it has

file permissions, who can create the file? Who can delete the file? Who can write into the file

etcetera? File dates last modified, for example, I talked about in the previous module about a

disc rental (())(8:27) employ going and changing a boot time variable, right. So now we could

actually have when was it last change (())(8:34) so that access time etcetera.

So file dates or access times are very very important and then who is the owner of this file?

Who to which group is belonging to? What is the access control list for this owner etcetera,

then the size of the file is also important. Then we should have pointers of, so these are all

information about the file. So these are called attributes of the file, say for example you are

person I am come across to you (())(9:00), I am my initial is v, I am so and so, my age is so

much, my gender is so, so I have some attributes, so like so for (())(9:07) like that the file that

the file also has some attributes, after that the data of that file should be store. So it will also

have pointers to where the data is basically stored, right.

So the typical file control block in the Unix environment we call it as an Inode or an

identification node. It has all these details about the files and it will also have pointers of

where the data of those files are stored.

(Refer Slide Time: 9:32)

So as I mentioned there could be a In-memory file system structures. What is that In-memory

file system structures? When I boot the system there should be something that is brought

from the disc into the memory, typically to enhance the speed and also maintain certain

security inside also, right. So what will be there inside a memory, for example, we create, a

open a file, for every file there is an entry created in a file table the file table is an In-memory

file structure. The file table will have details about all the files that are basically opened at

that point of time which is currently being accessed by you at least one of the process that is

executing in the system, right.

So for every process we have an In-memory file type that is what we call as per process open

file table and then I could have one file table for the entire system system wise. So these are

all basically important things that are brought into the memory so that we could we could

handle this. So what will be there inside an entry in the open file table as we see here? So

what could be there?

So when I start accessing a file please note that say, let us say a C program I say fscanf, so I

read byte after byte. So one of the important, so I do fscanf, now I read some byte and I do

some other processing and some later point I do an fscanf I read exactly the next byte after

what I have read. So this open process file table will keep some information about how many

bytes are currently read so that when the when I want to read the next fscanf will actually get

me the next byte from that.

So it will keep information about how many bytes are currently read, right. I can also open a

open a file with read write permission, so if you look at a fopen in your C code, you can open

it with read or write or read-write permissions that permissions also will be put here. So when

the file system comes into existence, there are lot of things that are brought into the main

memory for so that we can have quick access and also we can manage the operations on this,

so that is what we mean by In-memory file system structures.

(Refer Slide Time: 11:50)

Now let us look at what we mean by a virtual file system? The virtual file system actually

provides an object oriented way implementing file systems. So VFS allows the same system

call or whatever API the application programing interface to be used for different types of file

systems. So that is very very important. So today I use a USB, I use a CD, I use a SD card, I

use flash, I use different varieties of disc for everything, a C program whether I am opening it

on a SSD or I am opening anywhere, it only says fopen it only says fopen, it only says fwrite

if only fscanf, fprintf if close, that is single interface. It is independent of where you store this

file. So as far as that one of the important aspect of operating system is it should review what

I just explained earlier a virtual file system where you see a file as a file directory as a

directory we do not really bother about how this implement and that is also very important.

(Refer Slide Time: 12:57)

So this is a hierarchy, here I have a file system interface, I have a virtual file system interface

and then there could be different types, file I could have a disc, hard disc, I could have

another variety of hard disc, it can be a USB or SD card and then, I could also have file

system stored on some other server and this I can use using NFS or network file system,

right. So so so the file system can reside on the network also for us if you look at typically

large scale clustrures (())(13:30), right. There discs are attached to the network and there is a

disc driver or a file system implemented on the disc, which basically serves the remaining

compute nodes through the network, so basically giving as a network file system.

So if you want to understand more about network file system, just go and search for NAS (())

(13:54) network adapter storage NAS and you can basically get more details about how file

systems can be implemented through the network.

(Refer Slide Time: 14:06)

Now let us quickly look at directory implementation. What is a directory? A directory

essentially consist of list of files that are stored plus pointers to the next the directory (())

(14:14) other sub-directories. So I can implement a directory as a linear list when I am

implement it as a linear list what happens? When I want to open a file, what will the

operating system do? It will go to the directory and scan one by one. So if there are say 50

files or 100 files there then I want access the 100 file, I have to scan from the top and go to

the 100th file and then basically pick it up.

So that time required to open a file becomes extremely, so these are very important

interesting things about directory implementation. The next thing is hash table, right, so what

we can do is that a given a name you would execute a function called a hash function and that

will tell you an entry where it will be. So a very simple example of hash hashing, so so let us

say that I will do some H of the directory name, right and so I have a table say 0 1, 2, 3, 4,

this H will take a directory name as input and give an answer in the range 0 to 4.

So let me say H of student one, this is file that will go to say 3, so student one let me call it S1

is stored here. Now, H of student 2 will go to say 4, so S2 will be stored here. So whenever I

search first S2 I again we execute this hash function and that will give me 4, so immediately I

can go to 4 and get S2, right. Similarly, if I want to search for S1 I execute this H on that

directory name and that will give me 3, so if I go to 3 I will get that S1. So this is so in

constant time I can go to this thing, but the path is there could be this hash function might be

such that there can be some H of s10 that could also give me 3. So that is what we call it as

collision here. So here S1 then I will have S10 also showed.

So when I want to search for S10, I evaluate this hash function that gives me 3, I go to this 3

first see S1 then I see S10. So it will take some time it need not be necessarily constant time.

So this is another very important thing. So some of these very interesting, because many of

the virus you see, they actually create they go and sit (())(16:54) they can hide in the file

system, basically they get themselves you know implanted inside the file system and they

adjust the permissions, they can adjust the structures such that they are hidden.

So lot of these type of implementation details are exploited to gain stealth a virus comes into

a disc. It is the main imp thing is stealth, it does not announce or it does not given any pointer

by which you can quickly find out that it has infected the disc and for doing all these things,

understanding of this directory implementation is extremely crucial that is why we are trying

to cover this. These are all basic operating system fundas, but we are trying to cover this here,

because you know these will also have some implications on the way a virus can affect your

disc. So that is why you just virus can come and stay in the disc and with (())(17:50) stealth,

okay. So that is why we trying to issue this (())(17:52).

So now a directory could be implemented as a linear list. It could be implemented as a hash

table and in the case of hash table, there will be collisions and there ways of resolving

collisions, one thing is to have a in a sub list for every entry as I have shown here, okay. So

we will next go into the next module and talk more about file system implementation layer.

Thank you.

