
Information Security-3
Prof. V Kamakoti

Department of Computer science and Engineering
Indian Institute of Technology Madras

Basics of Unix and Network Administration
Operating Systems
Mod02 Lecture 10

Module 10: Memory Management-2

So welcome to module 10, so now we deal it with the memory management perspective. One

of the important things that we need to keep in mind is that we are now looking at servers. So

as this course also titles is a server management when we look at servers, there will be

multiple processes that will be executing on the server and we call it as degree of

multiprogramming, right. What (())(0:38) degree of multiprogramming? The number of

processes that are simultaneously ready to be executed on the CPU. So each of these

processes would be allocated some memory and on the logical address space and they have to

whenever they need to execute, they need to go to the main memory and execute that the

corresponding pages have to be move to the main memory should be available in main

memory and we have to start executing.

So suppose I have 10 processes the at least 10 pages should be or 10 or 20 pages should be

available in the main memory. So each process will be occupying say one or two pages

etcetera. Now what would happen is that if I keep on increasing, say suppose I have 20 pages

and I have 10 processes then I can allocate 2 pages for each process, suppose I have now I

make it 20 processes that means I am increasing the degree of multi programming then each

process will get on an average only one page to execute, right. So as I keep increasing

number of processes that could simultaneously exist execute on a system, what I call as

degree of multi-programming, which I increasing then the number of page faults will increase

that means then the CPU will be spending more time handling page faults rather than doing

any constructive execution of the process and this state is actually called as thrashing, right.

(Refer Slide Time: 2:23)

So the nectar beyond some level actually becomes poison, so if we keep on increasing the

degree of multi-programming somewhere there will be a heat and that heat comes in the form

of what we call as thrashing here. So this is how the thing, so what we see on your right hand

side is the page fault rate with the number of frames allocated, right. So there is a desired

behavior of paging algorithms is to reduce page fault rate below acceptable level as number

of available frames increases, right that means, so the question here is, does increasing

number of physical frames always reduce page fault rate? Actually we have said in the

previous class previous module that this is usually, yes but for some algorithms, this is not

guaranteed and we have said about Beladys anomaly.

What you see on the left hand side is the page fault rate and y axis is a page fault rate and x

axis is the number of frames and as I keep increasing the number of frames, you (())(3:11)

expect the page fault rate to become zero and for different 4 different algorithms like FIFO,

clock, LRio (())(3:18) OPT, OPT is the optimal most optimal algorithm. now we see as the

number of frames is increasing the page fault actually decreases, but there are some

algorithms where which suffers from this Beladys anomaly where as the number of frames

allocated increases, the page fault can also increase, for example, it may be something like

this, but then it can go up and then come down. So this is what we call as this Beladys

anomaly, right.

(Refer Slide Time: 3:49)

Now with this as a background that we have seen why paging actually works if I have

program say which will spawn across say 100 pages, suppose I have a program, which will

spawn across say 100 pages if I give just give it some 20 pages till it will work file (())(4:03)

it will not create lot of page faults, right. The reason is that the 80-20 rule 80 percent of

access are only to 20 percent of pages or 90 percent of the program executes for 10 percent of

the time and 10 percent of the program executes for 90 percent of the time, this is a 90-10

rule in software engineering so that means, so 80 percent of the access are of only for 20

percent of the pages.

So if those 20 percent is actually inside the our (())(4:31) memory then your program will

start working fast. So these 20 percent of the pages if they are moved from the disc memory

and they are available then it will start working very well. Now what does that 20 percent

mean if I have 100 pages then 20 pages should be allocated surely, but if I keep increasing the

degree of multiprogramming then what will happen is that, so this is what happens if I start

increasing, I will not be in a position to give those 20 percent pages.

So if I have an 100 page program and I have to give 20 pages has an operating system for that

to execute, but since there are so many processes there. This is degree of multiprogramming

there then what will happen I will not be in a position to give you 20 percent of the pages, so

then what happens. So I will give less than 20 percent and then so as a process, I will land up

with large more of page faults and so your CPU will start handling more page faults rather

than constructive execution and that is why you actually see thrent (())(5:41) of decreasing

here this shown.

So as your degree of multi-programming increases, your CPU utilization starts falling down

at some point it will actually become zero, the system will starts handling, right. So till that

point as my degree of multi-programming increases you see and upward thrend (())(6:02) in

the CPU utilization but beyond some point it faults and the reason for this fault is because

CPU starts handling more the more of page faults rather than doing constructive execution

and the reason why I am getting more page fault is because, for every process at least 20

percent of the most important pages should be there in memory and they are not there in

memory and so these processes land up with more page faults essentially making CPU work

more for the page fault rather than constructive execution.

So this is where the thrashing starts, right and that 20 percent of the page is basically call the

working set of the process, so always my working set should be in the memory. If my

working set of pages the 20 percent of the pages call working set of pages that working set of

pages if they are not there in the memory then you will land up with thrashing. So one of the

ways by which a person can hack into the system is somehow if he is going to spawn more

processes which having a way of spawning more processes by which he could increase the

degree of multi programming, some vulnerability exist which could increase the degree of

multi programming and these processes can be some junk (())(7:17) processes too, but if he is

going to get to this thing then possibly, he can go and thrash the system, right, for example

even in the last before I had winded up the module the previous module, I gave an example of

a boot time variable of a server.

So if my boot time variable actually becomes zero in that case that means the data base

cannot access allocate its own memory, so then the database now starts allocating request

operating system to allocate memory for it and so the operating system, now in a particular

server environment like that, there could be lot of processes along with database as a process.

So now the operating system will also treat this database as one of those processes and so it

will only allocates some amount of memory to this database, but the database actually is lot

more memory because the working set of a database server can be much larger than the

working set of a normal process.

Now if the operating system with this boot variable zero if it starts looking at the database

process and also the normal process in the same way then what will happen, the database

process will land up with more page faults and essentially the database performance goes

down, a server or the entire say, for example your core banking in a banking environment or

your core insurance in insurance environment, these things will start, behaving very slowly, it

can even thrash the system right for. So this is very very important that we need to understand

here.

(Refer Slide Time: 8:52)

So what to do about thrashing? So when a thrashing comes you have to go and kill some

processes, but most importantly you should see that the thrashing should not recur (())(9:00).

So thrashing just by increasing the memory possibly thrashing cannot solve, so suppose a

server starts hanging, the immediate reaction would be that there may be memory issue

memory based issue. Now that memory issue will never get solved by increasing the amount

of memory if some somebody comes and says, you have a problem, so increase the amount of

memory, it my solve or it may not solve. The problem can be much more complex than this

issue, so that is one thing that we should understand.

So when there is a process that is hanging it is not just because there is less amount of CPU or

less amount of memory, it might be that there is something like thrashing that is happening

inside, which may increasing the number of CPU or increasing the amount of memory, you

cannot stop it, it may be a temporary relief (()))(9:56), but it cannot be permanent relief there

the problem which be much more deep rooted then that and that is what we are trying to hint

through this stuff. So as a perspective security engineer, you should you should keep these

things in mind , because if you go and handle large complex data centers etcetera, these

things comes extremely crucial, these type of knowledge is extremely important and crucial.

(Refer Slide Time: 10:22)

 So (())(9:56) I am just going brushing through this slides, because I have explained these

slides in great detail, these slides basically talks about what is a working set? This was 1968,

this we actually introduced by denning, so very very simple definition of this is set of pages

that I process access during some window period of some time period t in the past, okay. So if

this working set could be maintained in the main memory then the page fault can basically

decrease.

(Refer Slide Time: 10:53)

So if I have the knowledge of the working set an importantly, if the working set cannot be

allocated we swap out entire process and then bring it when you have enough memory to

bring the working set, okay. So rather than keeping that process and that creating lot of page

fault hindering the other processes, one thing is to keep the process that has as a large

working set away or giving it more pages that is what we told for data base it has a large

working set, the operating system could give permission to the database process to handles its

own memory, so sometimes database is becomes independent of the operating system just

needs the permission of the operating system, the operating system gives a huge amount of

memory, database takes care of handling the memory, so that is another thing. So these are

some of the issues that people have worked out in order to handle this working set problem.

(Refer Slide Time: 11:46)

 So the important takeaway from this point is that if I could increase the degree of multi-

programming see that the working set is not in the main memory then I can basically go and

you know bring the performance of the system down, essentially causing what we call as

denial-of-service and this is one thing that you need to keep in mind as a security engineer as

a take away from this course, please again note this is not a course on operating system, this

is a course on information security, so I am just trying to give some glimpse of operating

system fundamentals, which could have implications in information security, right. Thank

you.

