
Information Security-3
Prof. V Kamakoti

Department of Computer science and Engineering
 Indian Institute of Technology Madras

Basics of Unix and Network Administration
Operating System Introduction

Mod01 Lecture 01
Module 1: OS-Definition, Role and Types

So welcome to information security-3 course on basics of UNIX and network administration.

This is the third in the series of information security course has offered through this mooc

platform from IIT Madras. In the first course we just had an full introduction to information

security from a systems perspective. What it means to build a secure system? What are the

different definitions etcetera. There were the thing that was covered information security 1,

which was 2 years before. Last year (())(0:42) very we had as (())(0:42) course on the

information security 2,which was basically concentrating on how to build, how to use

contemporary hardware features and build secure system. So, we called it as architectural aid

to information security.

So, when we look at typical systems, first there is an hardware on top of it there is an

operating system and of course, the network, the computer communication network, which

basically connects multiple systems also start interacting at this point. So at the third level of

this information security series, we will present you the basics of UNIX and network

administration with some emphasis on security.So this will form the basis for the information

security 4 course and the subsequent courses in the series, which will basically a talk about

security at higher layers above the operating system and applications etcetera.

(Refer Slide Time: 1:42)

So, this course will be having 60 modules of 20 minutes each spawning (())(1:46) 20 hours.

We will have 8 programming assignments of both MCQ multiple choice questions and

programming nature and then actually assume that you have some basics programming

exposure (())(1:59) to a basic programming language and of course , they all be in end course

exam and you have to clear both the end course exam and the programming assignments to

basically get the certification right.

(Refer Slide Time: 2:11)

So we go into the module one which basically introduces some of the fundamentals of

operating system. So when you look at a system, there are three different views, one is the

end user, who uses the applications provided to him, for example, I use a browser yes I use a

word processor, I am an end user and what do I use? I use an application software that is

provided to me and who writes this application software? An application programmer

actually develops this application software. So the typical functionalities that I use as an end

user instead (())(2:45) I use the for example, I use a word editor and I say cut the text, I save

the file, I send the file, I print eth file etcetera. So I do not really bother how the software

actually works, I use the functionalities offered by the software, I am the end user and I do

not know anything about the system, I just know how to use the software namely a word

editor for example. So this is the end user view.

Now, somebody has written the software for you and that person is the application

programmer and what is the application programmer wants? He actually has to develop the

application using some of the features available to him and who gives those features? A

system software actually gives these features to the application programmer to make him

write the application, for example, when I am developing an application, which will be used

by some end user. Let us assume that I am developing the application using C programming

language. So what do I require, I require memory. So as a C programmer I will ask for

malloc. Malloc is that when I am executing a program I need memory as a application

software developer, I will ask the operating system or the system software, give me some

memory. This is called dynamic memory allocation you can go and look at any book in C

programming language and understand what is malloc.

So malloc is an example of some feature, which the application software would require from

the operating system to basically do it is computing. Similarly, I want to open a file, I want to

printf at the on the screen printf, scanf many many features that an application software uses.

These are all supported by some other software layer below it and that is called the system

software. So from an application programmer view, he bothers about what the system can

offer to him and basically that is what we call as the system software.

Now, somebody has to develop the system software and that person is basically whom we

call as a operating system programmer or the system programmer. So we have an end user,

who does not do any programming, he just uses the software. The end user uses an

application that application is developed by an application programmer who actually uses the

facilities given by a system software to develop the application.

Now, somebody has to write the system software and that person is a systems a programmer

and or O.S. programmer and he needs to know about how the hardware actually could be

used, for example, he reads know how to read from a disc, he needs to know how to start a

printer, he needs to know how to track a mouse. So there are three different views an end user

view, an application programmer view and the OS programmer view. So a system

programmer is mother bothered about the hardware. So in our last course information

security two course we have actually talked about what are the interfaces that hardware can

give to your system software developer. Now, in this course we will see how the system

software developer can utilize the interface that is provided by the hardware. So, this is how

we linked these three courses.

(Refer Slide Time: 6:16)

Now, what is system software? System software for example, when you write a C program,

you use lot of headers like hash include, studio dot h, stdlip dot h, math dot h, string dot h. So

lot of facilities are given to you. So a bunch of what are these dot h files, they are header

files, which basically point to some libraries, which are prebuilt and you can use it for doing

certain functionalities, for example, if you do not have studio dot h, if Suppose you have to

write your printf all by yourself, you will actually spent the four years if you are an

undergraduate student, you will spent the rest (())(6:55) of your four years just to write your

hallo world program, because printf is such a complicated function, you need to understand

lot to implement printf, but you finish your hallo world program in to save, the first five

minutes of your introduction to computing course. How do you do it, because you used printf,

which is given by somebody else and who is that the system software.

So a system software, a collection of C library functions can be called as a system software.

So, when you logging to your system, you basically have a window, a dextop coming up that

itself your system software. Now, when you are developing a web application and you

actually basically use a database to save for example, store all your login and password or to

store some of your credentials your data. So for example, my SQL is a database management

system. So DBMS can it is system software. Then there are lot of resource management

functions coming through the form of device drivers etcetera. So this is also we can say (())

(7:57), they are all system software and of course, finally the operating system.

One can say that then operating system is just a software, but actually it is more than a

software and we will see though, it is a software that is executing, but the general definition

say, we cannot say that an operating system is actually, a bunch of library functions like what

a C library function. We cannot compare the four blue points that I have given as example

with the red point that is the OS there. So for example, a OS cannot be compared with a C

library function, it is also both are software, but they are something different and let us see

what it is as we proceed in this module. Now, all these system software is available to the

application programmer through what we call as an application programmer interface API a

software API and this system software basically as I mentioned in the previous slide, we will

execute on the hardware.

(Refer Slide Time: 8:57)

Now, in this course we will bother more about system software. So as you see the entire

stack, stack is one over another at the bottom you have hardware resources and this hardware

is basically utilize by the software to execute. So there is an interface between software and

the hardware. This interface we covered in great detail in information security two course,

which is actually available for all of you to view what we call as architectural aid to

information security. If you have not done that course do not worry, this information security

three course is independent or is self-content of the information security two course, but if we

actually done that you will have a better appreciation of this course nevertheless (())(9:40),

you can safely do this course without attending the information security two course, you try

and explain lot of things and bridge those gaps that much I can assure you here.

Now, the hardware actually offer certain interface to the software and so, there are two parts

to the system software, one is a trusted OS, which actually gives which abstracts outs the

resources to the higher layer right. The trusted OS sometimes we call it as kernel. So what is

functionality of this? So a person who is writing a system software who 6 (())(10:15) above

this layer, for example, pink layer we are now talking about the green layer. Thus

programmer who is working at the pink layer need not really bother about the hardware

resources.

So this kernel basically abstract these resources and gives this as an interface to the pink

layer. The pink layer basically is a system software layer, which is still abstract it more and so

when an as an application software when I am developing it, I really need not bother what the

hardware underlying hardware resources, I can just write, for example, when you write a

printf statement, do you really bother what is the monitor there, no you can have any variety

of monitor, you just say printf, somebody takes care of taking your printf and printing it on

say, for example a monitor made by company X or monitor made by company Y, you say

fprintf, do you really bother what is the hard disc that is stored there, you do not bother.

So it can be by some company X or Y somebody else takes care of taking your fprintf and

actually saving it, in your file if you say fopen, open the file, fclose close the file, I am taking

examples from C programming language just to explain things better. So all these things are

taken care of by some layer and that layer is the operating system come system software. So

we will be focusing on the pink and the green that we are talking of in the screen, right and

so, course number two actually covered a (())(11:53) about hardware resources specifically

from information security perspective. Now, we will cover lot about the two layers here and

then subsequent courses we will talk about application software.

(Refer Slide Time: 12:07)

Now if you look at the components of a computer. So we basically have a computer hardware

on top it, executes the operating system and top of the operating system we have system and

application programs. The system and application program basically compresses the

compiler, your assembler, your text editor, data base system and then on top of this, there are

the users, who uses all these things. So there can be a user uses the compiler somebody can

use your text editor, somebody can use your web browser, somebody can play videogames on

top of you etcetera.

So there is a four layer when we view the system, there are four layers, the basic is the

computer hardware on top of it is your operating system, then your system and application

programs and then the end user, who uses this application program. To again say, in this

course we will talk more about the operating system and also, the network which actually

forms a major the interaction of a communication network to a system basically is through

the operating system. So we thought that we could make this together and give you a holistic

view of how an operating system and network work together.

(Refer Slide Time: 13:22)

Now, this typically the interface between the various components of a computer. So as a user

you actually drive and input to an application software, for example, you give a C program

and you compile it and when the program executes, it actually request for some service from

the operating system for example, malloc please give me some memory or say printf, printf

on the screen.

Now, the operating system will take this service request and need to get it executed on your

hardware. So basically this operating system translates your service request into a set of

instructions that will be understood by the hardware, for example, we say printf somethings,

the operating system will take that and through some means through a device driver, it will go

and tell to the screen to their graphics processing path of your system, go and print this. So it

basically gives hardware instructions and in return your computer hardware will say, in the

case of printing it just prints, but in the case of say, read something from the hard disc. So it

actually reads and it gives back a result of what it has read and once, the operating system

gets the data then it will give back the application software as requested something, for

example, it requested some memory, operating system will actually allocate that memory and

then give a pointer to that memory that is what we mean by service response and this will

basically we given as an output to the user.

So the user ask for certain things to the application software, which in turn ask for some

services from the operating system, which again ask which translates into set of hardware

instructions get it executed on the hardware, the results obtain back to the operating system,

which in turn gives response to the service request made by the application software, which

in turn is converted into an output and the end user can view it. So this is basically how the

four components actually interact.

(Refer Slide Time: 15:18)

 Now, in this whole thing what is this OS? It is nothing but a program between users and the

computer hardware, right and why do we need an OS we need a OS for lot of things. One of

the important things that we need to talk off and that is also very important from an

information security perspective is that, it abstracts the complete hardware from the user. So

as I mentioned you, when I want to do a printf, I never care what is the actual monitor or

what is the hardware that is executing there, I just tell printf and some layer takes care of

taking this printf and getting it printed on the screen and so, this is very very important.

So one of the most important obvious use of an operating system is to see that there is an

abstraction and because of this abstraction, your computing becomes very convenient, right

and since, the operating system is taking care of lot of co-ordination you can start using your

hardware in a very efficiently manner and also operations would be well tested by the

operating system. So if you request operating system for an operation then the operating

system also ensures that it does the operation correctly, for example, if I want to read a file I

want to read some bytes of the file, you just tell operating system, this is what I need, the

exact that bytes will be read and given back. So the operating system is also responsible to

see that your operation is correctly executed. So these are some need for an operating system.

(Refer Slide Time: 16:51)

So very quickly there are different types of operating system that we see even today. The type

of operating system actually depends upon the final end application, which you intend to use.

So there are several types of operating system very quickly, you could have a batch

processing operating system, a time shearing, a personal computer and workstation based

operating system, a real time operating system, a network operating system, which run runs

on your routers and your switches today, your network appliances today, a distributed

operating system, operating systems for small computers like embedded systems.

So different type of OS are there depending upon how your end application is, we will just

see more detail definition of this very shortly and then of course, the OS can also be grouped

depending upon other criteria like for example, single user operating system, there will be

only one user, who uses that system like for example, your dextop operate you may be the

only user, who is using it, you may not shear it with across you different users.

So there are lot of both execution and the security implications by saying that this is a single

user operating system verses a multiuser operating system, for example, your mail server

many users can login. So it is an the operating system that running’s on your mail server

should be a multiuser operating system, we will have single task operating system,

multitasking operating system, single programming and multiprogramming operating system

we can talk that. There is a distributed operating system, embedded operating system, real-

time operating system. So these are all different types of operating systems that we see. So

very quickly we will define these things, because these are very important for us to further

investigate on this.

(Refer Slide Time: 18:33)

A single user operating system or single task operating system is design to manage the

computer so that one user can effectively do one thing at a time. A single user multitasking is

a single user has several programs in operation at the same time, for example any

conventional OS like your Linux or windows that is running on. A multiuser operating system

allows many different users to take advantage of a computer resource simultaneously, for

example, your LINUX Unix servers many people can login; a mail server is an example of a

multiuser operating system.

Now, there are operating systems which are basically done for networking purposes. So this

is one certain difference that we want to see a multiuser operating system and a single-user

operating system that supports networking. So there are two things, a multi-user operating

system, a single user operating system that support networking, they are actually different, for

example, windows 2000 and Netware, these are actually single user operating system. There

is only a system administrator, but it can be used to actually networks thousands of systems,

it can each supports hundreds or thousands of networked users but the operating system

themselves are not truly multi operating systems.

So we are just trying to classify this we also suggest that you go and do a little more reading

about windows 2000 and Novell Netware through Google or Wikipedia to get more inside

into that, but we are trying to classify operating systems, because the understanding of this

type is extremely crucial for us to go further.

(Refer Slide Time: 20:05)

In there something call real-time systems, for example, a real-time system is what you expect

out of an operating system we say that if I ask for an operation X, I should get a correct

result. This is a normal operating system, but in a real time operating system, when I ask for

an operation X that the operation should be done correctly not only it should be done

correctly, but it should be done within a given point of time, for example, I am running an

aircraft or a any control system, let us say aircraft, I put the landing gear or something like

that I do not know how aircraft works, but let us say, I want to put a landing gear and which

will actually bring down the wheels so that the plane can land.

Now, the wheels should come down within say, next two minutes suppose it takes (())(20:48)

something happens to the operating system and takes one hour for the wheel to come down,

the plane cannot even land and it may go out of air (())(20:55). So the operating system that

actually controls an of aircraft should ensure that the operation is correctly done, but not only

that it is correctly done, but it should also be done within a particular time interval. So that is

a definition of a real-time operating system and there are distributed operating system, which

actually manages a group of independent computers and make them appear as a single

computer from your application software perspective and there are embedded operating

system that you see everyone has a mobile today right.

 So what runs there can be classified as embedded operating system or a real-time operating

system, it is (())(21:33) a very thin layer, but suppose you look at an internet of things IOT

devices. If you do not know what is IOT please, go to Google and find out what is IOT, but

these are very very small devices, which are used to find what is the pressure, what is a

temperature in a room, for example, something that runs on your washing machines, some

fussy logic that is running on your washing machine. So there are all examples of your

embedded operating systems and these are very very compact and extremely efficient by the

science (())(22:02).

(Refer Slide Time: 22:17)

So if you look at the evolution of OS, we have started from what we call as mainframe

computers, which basically does batch processing, for example you give the job today and

tomorrow morning you come and collect to mini-computers and then to dextop computers

and to hand-held computers. The major transitions from mainframe to the hand-held

computers is that we are now looking for interactive computing. I start doing some work and

at every step I am expecting the computer to give back the results and so, this is what we

mean by an interactive computing and also that these systems are now heavily networked,

moment I switch on my mobile, I am connected to billions of people billions of such devices

across and then we start shearing information.

So today the most important aspect of operating system both from the development of the

operating system point of view from the requirement of the operating system point of view

and also from the view of you know, the security of the operating system is that the system

are become highly interactive, the systems are expected to be real time, in sense that we need

very quick results and that the systems are heavily networked right. So these three form the

basis of development of operating systems today and when we start looking at maintaining

this operating system, administering this operating system. It is very important for us to

understand these requirements today that we have users, we have multiple systems connected

to a network, we have users, who want to use multiple applications and who are looking for

very quick results and this forms the basis of our understanding of contemporary operating

systems.

(Refer Slide Time: 23:59)

So what is the role of an OS? A role of an OS is first it is a resource allocator, I ask for a

resource say, for example I ask for opening a file that means what I am looking for a file

storage, I want to execute my program. So, I ask the OS give me some CPU time so that you

get me executed, I am asking for some memory RAM space through malloc. So, the main

role of an OS is that the application software will start asking for resource and the OS has to

allocate this resource to the application software and importantly it should also see to it that

there is no conflict of this resources for example, let us say in a mail server we are trying to

fellows (())(24:40) want to print.

So the OS has to serialize this job, first he has to allow user1 to print then he has to bring in

user 2 to print it. If both of them start printing then one line of your file will be printed next

line of the file will be from his input, right. So there is a need to resolve conflicts here. So

two fellows, who want to use the printer, I want to print two files, I will print file one and

then file two. So this act of serialization is what we call as conflict resolution and that is one

very very important role of an operating system and the operating system also actually

controls the program execution for example, if you might have seen core dump, segment

fault, segfaults, what does it mean? The operating system has given you some memory and if

you start overshooting that memory immediately the operating system has to stop you, right.

So this basically ensure typically in a multi-user operating system where many users login

and many process get executed. One process should not interfare with another process. What

is a process? A process is a program in execution. So when your program is executing, some

others programs error should not affect you and your error should not affect some other

program, because both of them are executing in a timeshared way in the system.

So one of the important use of an operating system is to see that typically, in a multi-user

operating system like your mail server, the mistake done by one program should not affect the

execution of another program and as a program, when I do a mistake for example, I do a

divide by zero, somebody has to stop me and say you have done a divide by zero, so you are

not valid and you have to shut down my program, because it has done something, which is

mathematically wrong or which is a programmatically or computationally wrong. So such

type of error reporting, catching errors are also a very important role of an operating system.

(Refer Slide Time: 26:42)

So one of the important role of the OS in addition to allocation of resource is also to control

the execution of your program and also see that your program is correct in execution and if

there is something wrong then it has to stop and it has to report an error.

(Refer Slide Time: 27:01)

Now, what is the definition of an OS? It is so there is no universally accepted definition. The

main reason is that OS is need to serve multiple users, executing varieties of programs on

variety of hardware. So the OS has set of applications on top of it and it has the hardware

below. So normally if we take say for example, UNIX it executes on multiple different

versions of Unixs execute on multiple different varieties of hardware, right. It is not just a

CPU it sees multiple devices say there is printer A, printer B, disc A, disc B.

So it is not just CPU but (it all) there are multiple CPUs also but more than the CPUs there

are multiple peripherals. So, the OS sees multiple things below it and also, varieties of

software. So there could be C, there could be java, C sharp, D sharp, E sharp, F sharp many

many things python, HTML5, HTML4, internet explorer, Firefox, chrome varieties, open

office, closed office (())(28:09). So you see lot of things, lot of verities on top and lot of

varieties in bottom and so, essentially your operating system is sort (())(28:18) should address

this variety and that is also perhaps a reason why there is no universally accepted definition

fort an operating system. So it is actually one program running at all times on the computer.

So moment you boot the operating system comes into existence and sometimes it is referred

to as the kernel, which is nothing but a kernel is actually not the operating system it is the

heart of an operating system, it is a part of an operating system. So then everything else other

than the kernel can be called as system program or an application program. So it is sort of a

very vague definition here but then there is one understanding, there is some basic things that

execute always and we will call it as kernel and on top of it there are lot of things that

basically interface the operating system with the application layer and the application

software layer and the end user.

So the goals of this operating system the primary is to give the convenience, secondary goal

is to ensure efficient operation, we have covered that in great detail in the previous slide and

most importantly when I want execute a program, they should facilitate the execution of the

as a user when I want to run an application program, it should facilitate the execution of this

program.

(Refer Slide Time: 29:34)

So how and when does an operating system start to function? So when you just switch on

your system your system will start executing from some read only memory. This is a code

that is pre-stored there. So it will start fetching the instructions from a read only memory and

that is those are first things that get executed and that is sometime called as firmware and

what will the firmware do? The firmware will now go and look for a bootable disc, on a

bootable device and it will there in that bootable device, there will be (())(30:14) as the first

sector or the first block of the bootable device and it will load that program that is stored in

that bootable device and it will stat executing and that first program is called the boot strap

program and then that will further load device kernel and give the control.

So what happens when I switch on? There is a read only memory. There are some instructions

that are there that will start executing and that will basically go and find a bootable disc so

that firmware will find this bootable disc and in that there will be one master boot record,

whatever is there, it will disc firmware will load the content of that master bootable record

into the memory and give control to this. So whatever is stored on the master boot record will

start executing and that will go entered and load device kernel.

So this is how the kernel comes into existing. So right from the inception right (())(31:14)

from you switch on till you switch off, there will be one program that will be always in the

background in the picture and that is the operating system. So to understand how an operating

system function, it is necessary to have an idea of computer organization and operation we

will quickly cover that in the next module. Thank you.

