

Introduction to Modern Application Development

Prof. Tanmai Gopal

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module - P3

Lecture - 09

Practical: Building a webapp with nodejs and

using git for source code management

Introduction to Reverse Proxy

Hi everybody, welcome to module P3. In this practical module, we will be building a

webapp in nodejs. And will also be using git for source code management. This module

will also introduce us to the concept of a reverse proxy, which is a very interesting

concept to understand, because it leads to things like load balances later on.

(Refer Slide Time: 00:18)

Our main objectives in this course are to create a project and deploy it online, and also to

develop the webapp locally, and by locally I mean on your own computer system. We

will also try to understand how deployment works, we have the cloud.imad.hasura.io

console and that will lead us into a discussion about reverse proxies.

(Refer Slide Time: 00:41)

Let us head to the console. I go to my console. I can see that there is a button called

create project, click on this button.

(Refer Slide Time: 00:47)

When I clicked on this button the source code for a basic webapp was copied

(Refer Slide Time: 00:49)

And was created just from me on my github account and we will understand how this

works later and that project was created and is now accessible on github, and also on the

IMAD console. Now, I can go to the code console, will wait till all the files are loaded.

(Refer Slide Time: 01:09)

On this page, which is your coding sort of programming interface; you can see

instructions about how to use the console on slash code, slash home. And we can see that

we have several different files here.

(Refer Slide Time: 01:28)

 Let us click on a file, and you can see there is some javascript coded in here.

(Refer Slide Time: 01:32)

HTML here.

(Refer Slide Time: 01:35)

There is some javascript here and some CSS here. We will understand what these are

again in a little bit. For now, let us try to go to our app and see what happens when these

source code files are deployed into a webapp.

(Refer Slide Time: 01:51)

When I click on it, I get a message saying that my app is not running.

(Refer Slide Time: 01:56)

So, I need to restart my app.

(Refer Slide Time: 01:03)

Now, once I click on restart, I can go and try to refresh this page, but the server might

take a while to start and so please to be patient for few minutes to let your server start.

(Refer Slide Time: 02:11)

And you can see now with the server is started. And the first HTML page is loaded at Hi!

I am your webapp. This is our project with some basic source code files that is already

been deployed for us on a particular domain. Just to see how this works.

(Refer Slide Time: 02:30)

Let us go and make some small changes. So, I should change, Hi I am your webapp to Hi

I am Tanmai and this is my first webapp. So, I made the changes to the HTML file.

(Refer Slide Time: 02:50)

And so hopefully I should be seeing that text replace this text here, this is I am your

webapp should get replaced.

(Refer Slide Time: 02:56)

Let us save this and restart our server. Just go back.

(Refer Slide Time: 03:07)

And refresh this please be aware that you will have to give some time, because your files

are being copied again your application is being built and is been deployed on the server.

(Refer Slide Time: 03:27)

So, we can refresh to three times, and you can see that the text is changed, and this is

how I can change and deploy code on my webapp.

(Refer Slide Time: 03:35)

Now, let us try to understand how this works what just happened, when we had a bunch

of source code files I made some changes I clicked on a button.

(Refer Slide Time: 03:45)

And suddenly, I am able to see my server live on my own domain. For example, if your

user name is user 1 2, your app would be on user12.imad.hasura.io, and mine because

my user name is coco98, my app is coco98.imad.hasura.io.

(Refer Slide Time: 04:01)

So, how is this happening, if you remember we had discussed a five-step process last

week about how our webapp would be deployed. And we said that the process roughly

consist of getting a domain name, getting hosting, linking the domain app to the IP that

the hosting provides us with developing the source code or installing a webapp or a web

server and then deploying that on that machine, so that that web server is accessible on

that IP and on that domain name.

Let us try to revisit that five-step process and understand how this console is helping us.

The first thing that we had to do is to get a domain name; in this case, we have already

created domain names using sub domains. The domain is hasuraapp.io, on which we

have the sub domains username.imad.hasuraapp.io to help us deploy our web apps on

these specific domains.

Our second step was to get a server machine in a static IP. In our case, we have got in we

have got a machine on actually a large cluster of machines for all the students of this

course. And all of them are fronted by a single IP. This is equivalent to a set up we have

one large machine which has one IP, and all the servers for all the students will be

deployed on this single machine. And then I think that that we did was map the domain

to our IP, which we done. All the sub domains at imad.hasuraapp.io, which is to say

star.imad.hasuraapp.io, are all domains that are pointing to our IP.

No matter what user name you enter with imad.hasuraapp.io, it will point to the same IP.

And you can try to resolve for this by using ping and doing a ping on your user name.

imad.hasuraapp.io and seeing where the response of that ping is or what the resolution of

that ping is.

The fourth thing that we had to do is develop the webapp or write an install a web server.

In our case since, we copied a project a pre existing project because we did not want to

write all the code from scratch just to demonstrate this process. We copy the source code

files for a webapp. And when we clicked on create project, actually what was happening

was that was that project files have been copied from a templated project into our project

and that is kind of where the source code files came from.

The fifth step was to deploy the source code files onto our server, so that it is alive at the

domain name that we have bought. In this case or in the consoles case, when you click

on commit and restart and the blue button mark commit in restart these files are saved to

github and then your server is restarted with the latest changes from your github project.

Let us now go into little more detail and actually understand what are github project is

and what these source code files are.

(Refer Slide Time: 06:53)

So, if I go to my github account slash coco 98 can see that there is a new project has been

created called imad 2016 app. We did not create this project; this project got created

automatically when we clicked on the button create project.

(Refer Slide Time: 07:03)

Let us go to this project. And when you go to this project, you can see there are a few

files that are already here.

(Refer Slide Time: 07:11)

And these are the files these are the same files that we are looking at in an IMAD

console. The editable files are files which are javascript HTML or CSS files other files

are not editable on the IMAD console.

(Refer Slide Time: 07:27)

If you look at the comment history of the project which tells us the activity of the project,

we can see that there was a change made from IMAD console, which says update your

index dot html, and this was the change that we made. To understand what this change

was you can go and click on the commit id.

(Refer Slide Time: 07:41)

And we can see that this was the last change that we made which was hi I am your

webapp changed to – Hi! I am Tanmai and this is my first webapp. So, you can see the

changes here.

(Refer Slide Time: 07:51)

Now, where are these files come from, like we said that we been copied from a template

project or a base project. And if you go to the title of your own page, you will see that

you will see user name slash imad 2016 app forked from hasura imad imad 2016 app.

(Refer Slide Time: 08:08)

If I click on this link, this is the base project that everybody will take a copy of to create

their own project and so start working. And so when I was clicking on create project in

the IMAD console the green button, what was happening was this project was been

copied into my account.

(Refer Slide Time: 08:23)

And a project was created for me into my account based on this project. And this process

of copying from an existing project or copying from an existing git project is called

forking.

(Refer Slide Time: 08:36)

Now that we have understood point 4 which is how the source code was copied to our

github account and you clicked on create project and surf what is happening in the

background. Let us try to understand the fifth step which was how the deployment of the

webapp happened. On this console, everybody’s webapp is accessible on user name that

imad.hasuraapp.io. And we also said that the all of these domains actually point to the

same IP or the same machine.

(Refer Slide Time: 09:02)

So, how was this happening, how are multiple domains working on the same IP. There

are two ways to achieve. The first way to achieve this is what we covered in the last

practical module what we covered in earlier practical module, when we used two web

servers on the same computer and we ran them on different ports.

The option here is that we can have a big server machine, and every student server can

run on this machine at different ports. And so user one server would be

imad.hasuraapp.8080; user 2 would be imad.hasuraapp.io 8081. And you could do this,

but this does not give us good looking URLs, this does not give us a feeling that we have

our own domain name. And if you really want to have and somehow we want to achieve

user name.imad.hasuraapp.io as our domain and the only way to do that is using a

reverse proxy.

(Refer Slide Time: 10:02)

The reverse proxy might be a little complicated to understand and do not worry about it,

because it is not extremely important to this course, but it is a nifty concept to

understand. Let us look at how the reverse proxy is helping us here. We have star dot

imad.hasurapp.io, which is our set of domains pointing to our IP the IP itself is of that of

a large server machine. And we somehow need to have multiple web servers running on

this single machine.

The first thing that we do is that we set up a web server called nginx, which is the web

server listing on port 80. Now as you would remember whenever you connect to a

website, the browser by default tries to connect to port 80, you can change that by

specifying local host 8080, and so the browser will try to connect to local host at 8080.

But if you forget the port 8080, the browser will try to connect two local hosts at the port

80. So, we run a web server an nginx web server on the port 80

But we configure this nginx web server in a special way. What we tells this nginx web

server is that if there is an incoming request from let us say for example,

userone.imad.hasuraapp.io, and if there is an incoming request that comes to nginx at

user one.imad.hasuraapp.io, it forwards that connection to a process that is labelled user

one.imad.hasuraapp.io on the same machine. And how that processing running on same

machine that process is running on some arbitrary port and we do not care about what

port number is running on, because it seems that the response is coming directly from

nginx, but it is not.

Nginx is acting as reverse proxy to a process that is sitting what is called upstream to

nginx and responding to the request so that means, that userone.imad.hasuraapp.io goes

to this process usertwo.imad.hasuraapp.io goes to another process, user three to another

process, and user four to another process. This business of creating of front to multiple

servers is called reverse proxy. And when we do it for web servers, we call it a web

reverse proxy

(Refer Slide Time: 12:15)

So, what does this reverse proxy do, it is a web server that fronts other web servers

which we have understood. And based on certain parameters or based on any property of

the incoming request, it can choose to forward it to a particular upstream server, just to

revise our definitions again.

(Refer Slide Time: 12:34)

We are calling these processes upstream server and we are calling nginx our web server

or the reverse proxy or the web server that is listing on port 80.

(Refer Slide Time: 12:44)

So, based on any property of the incoming request nginx or the reverse proxy can choose

to forward it to a particular upstream server based on that property in our case that

property is the host name. So, based on the value of the host name to say

userone.imad.hasuraapp.io nginx decides to forward it to a different upstream server but

remember that this can actually be done for any property of the request. So, you can

create your own reverse proxy that is forwarding to different upstream servers based on

the URL path.

For example, imad.hasuraapp.io slash user one will go to the first web server, slash user

two will go to the second web server right. In fact, it does not need to be just based on

the property of the request object, it could be based on something else all together for

example, nginx can decide that it will forward it to upstream server that it will take by

random or it will cycle through them in what is called a round-robin method.

It will forward the request once to server 1, then to server 2, then to server 3, then to

server 4. This is kind of how you achieve load balancing, because if you have many

different web servers and you want to spread your connections or your load your

incoming request load across these web servers. Then you have an nginx that sits in front

and that forwards the connection to each to a different web server for every new

connection. There are two commonly used reverse proxies nginx and HA proxy.

(Refer Slide Time: 14:26)

Incidentally, this is exactly how shared hosting works. When you buy a shared hosting

account, the shared hosting provider gives you a large machine; on that machine a

several users, and for each user a separate server process is running. But how does

everybody manage to get their own servers and all of them seem to be running on port

80, the answer is that they are not running on port 80.

The shared hosting provider has also set up a reverse proxy or a gateway and that

gateway based on your own domain name and in this case it is based on sub domain, but

in the shared hosting setup it is based on your entire domain name. So, for example,

website one dot com could be going to user one, website two dot com could be going to

user two, website three dot com could be going to user three. And this is how typical

shared hosting setup is done as well.

(Refer Slide Time: 15:10)

Now we have understood what the console, what the IMAD console does, where are

source code file are coming from, how are IMAD app is even deployed. And just to sum

up what we did on the console was let we created a project. We got a bunch of files. We

clicked on a button called restart and suddenly our server was live on

username.imad.hasuraapp.io.

Now let us try to do some local development and change the source code of our files on

our own computer without needing to connect with the internet or without needing to

work directly on IMAD console.

(Refer Slide Time: 15:50)

Let us try to start our local development. The first thing that we will do is open up our

terminal. Second, I am going to zoom this up a little bit, so that is clear for everybody.

Now I will create a new directly where I want to start doing my work.

So, I will call that nkdir webapp. And I go inside that webapp. Now I want to copy my

source code files here, the same source code files that are on my github account, the

same source code files that have been taken from my github account putting the IMAD

console, I also want them here.

(Refer Slide Time: 16:27)

So, what I am going to do is go to my github.com project I am going to click on the

button called clone or download.

(Refer Slide Time: 16:29)

I am going to copy the URL.

(Refer Slide Time: 16:33)

And then I run a command called git clone. And if I do ls to see what files have been

created. I can see that new directory has been created called IMAD 2016 app; if I go

inside this directory.

(Refer Slide Time: 16:51)

I can see that those same files are here the files I could present here.

(Refer Slide Time: 16:55)

This process was equivalent to taking a downloading a zip file and unzipping the zipped

file. In fact, we can do that. Let us try to go download zip you can see that the zip file has

been downloaded.

(Refer Slide Time: 17:07)

Let me copy the zip file from my download folder, I just clear the screen.

(Refer Slide Time: 17:19)

Now, I unzip that and you can see that new directory called IMAD 2016 master has

come up. And this also contains the same files. So, what I did with git clone was

equivalent was similar to downloading a zip file and unzipping it.

(Refer Slide Time: 17:48)

Let us remove that the duplicate copies and I will remove the zipped file also.

(Refer Slide Time: 17:57)

I go inside this folder which was my source code, and now I want to run my server here.

I know that this is a nodejs app and so I need to install all the dependencies are required.

Once again make sure that you have nodejs and npm installed, and then you can use this

to run the command npm install, this will automatically detect what the dependencies of

our application are and we are install those dependencies.

Wait for a second, while it is downloading. And if you list the directories again, you will

see that a new folder has been created called node modules. And if you go inside this

folder called node modules, you will see that some files have been downloaded these are

the dependencies of our file.

Remember that there is no magic here right, for example, if you think that n p m install is

a magical command that is somehow detecting what the dependencies are and installing

them it is because all of these dependencies are in a file called package.json.

(Refer Slide Time: 18:54)

And if you look at this and if you look at this there is of there is a json object and this

contains the word dependencies and it has two of the dependencies listed out and their

(Refer Time: 19:05) numbers.

(Refer Slide Time: 19:08)

That is how npm install knows what modules to install. Now once our module is

installed, all we need to do was run node server dot js, and it says that our course app is

listing on port 8080.

(Refer Slide Time: 19:23)

Let us head to the browser. Let us go to local host 8080.

(Refer Slide Time: 19:29)

And here you can see that our app is running, and this is the app that we changed.

(Refer Slide Time: 19:34)

So let us try to make some changes. Let us go to the UI folder index dot HTML.

(Refer Slide Time: 19:39)

And let us say right, so I saved that.

(Refer Slide Time: 20:00)

Once again I use the editor vim you guys can use the editor sublime or atom if it is more

comfortable to you. I would highly recommend both sublime and atom these are fairly

friendly text editors. You can just double click on the file and edit it and save it and

everything will be the exact same. There is no need to be worried or confused about

getting vim to work on your machines. Now, once you have the setup done, you can just

run node server dot js right.

(Refer Slide Time: 20:29)

We have restarted our server and you can see there some new changes have come right.

(Refer Slide Time: 20:43)

Let us save these changes right so that, just like how when we edited code on our

console; right.

(Refer Slide Time: 20:46)

And it got saved to github which we saw.

(Refer Slide Time: 20:50)

In which we saw in the comment history, we also want to save our code.

(Refer Slide Time: 20:52)

Let us do git add ui slash index dot html, because we have made changes to that and we

want to add it to our next commit. Similarly, I can add more files that have been

changed. Once I am done adding the files that are changed, I say commit and I say minus

m to send a commit message, which is made some changes locally and once I make these

changes I will push it back to the central depository which is on github dot com. So, I say

git push origin master and it is saying that it is done to https github dot com slash coco

98 imad 2016 app dot git right it is saying that it is pushed.

(Refer Slide Time: 21:13)

Let us go back and refresh this page and you can see that the new changes have come up

here.

(Refer Slide Time: 21:50)

And if you click on this commit again you will be able to visualize what changes you can

see here; incidentally github.com powered by git as well.

(Refer Slide Time: 21:57)

So, you can run the same command here to see what changes have been made by doing a

git log.

(Refer Slide Time: 22:02)

And you can see the commit history although not is nicely in visually in a manner that is

as usually appealing as it is on github.com. You can see that I have made some changes

locally, and before that the imad console on our behalf updated the ui index.

(Refer Slide Time: 22:18)

(Refer Slide Time: 22:20)

Once the changes are here in github, we can even go back to our console and we can

refresh this page, and you will have to wait a while it fetches the files. And you can see

that this the console is also refreshed itself, because it is also fetching your files from

your github account your github account is the essential place where all changes have

been kept in this example. And once this is done, I can click on restart again.

(Refer Slide Time: 22:46)

And if I restart my server, I should be able to see my changes on the server as while. Let

us give it a while.

(Refer Slide Time: 23:04)

And you can see that the new changes have come up here right. This is exactly the same

what I had on a local host, and now I have it public on the web, so that anybody else can

also view these changes.

(Refer Slide Time: 23:15)

So, why did we use git, why are we using github.com, why are we just copying files,

why did we just not copy a zip file and use that to create a copy of the webapp that we

wanted to use? Why did we just not copy a zip file and then save it on our local machines

and then once you made the changes, create a new zip file and then upload that zip file

somewhere, we can we can collaborate on for example, on Google drive or even on drop

box.

The reason why we using git is because of all those little features that I showed you, I

showed you a commit history I showed you what changes have been made in every

single commit and git has the power to let us role back to a particular commit. By if we

make any changes or we make any changes that we want to discard, or we want to pull

changes from an earlier commit, all of these things are possible with git. And doing this

is called versioning your code and git is an example of a vcs one of the most popular vcs

a version control system is out that today.

Just an interesting fact git was also invented by the inventor of Linux Linus Tarwals and

he invented both Linux and git. And he jokes that his named both the pieces of software

after himself. You can read more about git and version control in general by heading to

this link that I have mentioned on the slides. And you should read up and understand

because git is a powerful piece of software that is very, very useful in all kinds of

software engineering.

(Refer Slide Time: 24:41)

Let us just quickly recap because we covered a lot of complicated concepts. We have a

basic webapp with some source code files that has been created by the IMAD team.

These were copied when you clicked on the create project button these were copied and a

new github project was created automatically for you which was accessible on github dot

com slash username slash imad 2016 app. We copied those files on to our local machine

by using the command git clone, and we got them on our local machine.

And then after that we pushed it back to our github project; and after pushing it back,

when we deployed it those changes were deployed on to our server. And effectively what

we were able to do was deploy source code from our computer to our server via github.

This might not be how you typically deploy a web server in a more typical setup, you

might actually end up copying files, because you have your own server machine you

might actually copy files or copy your source code files from your local machine to your

server. This is not a recommended practise.

It is always best to use git to or any other version control systems or version your code

and then only deploy versions of your code on the server, so that no random files are or

mistakes are copied to your server. Again it is also important to understand that

everything all the components that we used are fairly optional.

For example, we used github dot com for this particular, we are using github dot com for

this course, but you might as well be using bitbucket dot org or gitlab dot com which is

all alternative pieces of software that do the same thing. The same thing here being

hosting a git project or on the web right; git is a separate piece of software, it is not

related to github, it is a separate piece of software that runs on machines. So, it is running

on the github server, it is running on our computer, it is running on the IMAD server.

(Refer Slide Time: 26:32)

What you guys should do next is go on to the console, create your project, and start

trying to write some code modify bits in pieces of code keep experimenting and read up

a little bit about HTML and CSS basics to try to modify it. And try to make a profile

page, you guys can make some profile make a profile page that describes yourself and

what you do and post the screenshots of that on the forum.

(Refer Slide Time: 26:55)

You do not need to have the local setup portion to do the basic app development and

deployment that is required that is strictly optional. However, it is recommended because

if you are going to go on to do slightly more advanced things, and become a developer

you will need to have a local setup ready. You can use the IMAD console for

development and deployment you can write your code directly on IMAD.

And you do not have to be worried about your changes being lost because all your

changes as soon as you click on co commit are saved to github, because of the high load

that we will experienced during this course your server might switch off due to inactivity

if it is more if it is inactive for more than 10 minutes, you can always restart it just by

going back to your console and clicking on restart. In case you have any issues with the

forum, in case you have any issues with the console, please feel free to reach out to us

directly on the forum or on a twitter handles. And we will make sure that we fix it for

you.

(Refer Slide Time: 27:49)

In the next sessions, we will be looking at server side javascript, and understanding how

HTML works, we will also be looking at client side javascript. So, although we have not

introduced what the source code files are, and how they are working, we will be getting

into that from the very next lecture.

